aboutsummaryrefslogtreecommitdiff
path: root/ggml-metal.metal
blob: c94ef83f9e5e0f3d1816c1d6dd74eeb554bb26e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
#include <metal_stdlib>

using namespace metal;

#define MAX(x, y) ((x) > (y) ? (x) : (y))

#define QK4_0 32
#define QR4_0 2
typedef struct {
    half    d;             // delta
    uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;

static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) {
    const int qk = QK4_0;

    assert(k % qk == 0);

    const int nb = k / qk;

    for (int i = 0; i < nb; i++) {
        const half d = x[i].d;

        for (int j = 0; j < qk/2; ++j) {
            const int x0 = (x[i].qs[j] & 0x0F) - 8;
            const int x1 = (x[i].qs[j] >>   4) - 8;

            y[i*qk + j + 0   ] = x0*d;
            y[i*qk + j + qk/2] = x1*d;
        }
    }
}

kernel void kernel_add(
        device const float * src0,
        device const float * src1,
        device       float * dst,
        uint tpig[[thread_position_in_grid]]) {
    dst[tpig] = src0[tpig] + src1[tpig];
}

kernel void kernel_mul(
        device const float * src0,
        device const float * src1,
        device       float * dst,
        uint tpig[[thread_position_in_grid]]) {
    dst[tpig] = src0[tpig] * src1[tpig];
}

// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_mul_row(
        device const float * src0,
        device const float * src1,
        device       float * dst,
        constant   int64_t & ne00,
        uint tpig[[thread_position_in_grid]]) {
    dst[tpig] = src0[tpig] * src1[tpig % ne00];
}

kernel void kernel_scale(
        device const float * src0,
        device       float * dst,
        constant     float & scale,
        uint tpig[[thread_position_in_grid]]) {
    dst[tpig] = src0[tpig] * scale;
}

kernel void kernel_silu(
        device const float * src0,
        device       float * dst,
        uint tpig[[thread_position_in_grid]]) {
    float x = src0[tpig];
    dst[tpig] = x / (1.0f + exp(-x));
}

kernel void kernel_relu(
        device const float * src0,
        device       float * dst,
        uint tpig[[thread_position_in_grid]]) {
    dst[tpig] = max(0.0f, src0[tpig]);
}

constant float GELU_COEF_A    = 0.044715f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;

kernel void kernel_gelu(
    device const float * src0,
    device       float * dst,
    uint tpig[[thread_position_in_grid]]) {
    float x = src0[tpig];
    dst[tpig] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}

kernel void kernel_soft_max(
        device const float * src0,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant   int64_t & ne02,
        threadgroup float  * buf [[threadgroup(0)]],
        uint3 tgpig[[threadgroup_position_in_grid]],
        uint3 tpitg[[thread_position_in_threadgroup]],
        uint3   ntg[[threads_per_threadgroup]]) {
    const int64_t i03 = tgpig[2];
    const int64_t i02 = tgpig[1];
    const int64_t i01 = tgpig[0];

    device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
    device       float * pdst  = dst  + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;

    // parallel max
    buf[tpitg[0]] = -INFINITY;
    for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
        buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
    }

    // reduce
    threadgroup_barrier(mem_flags::mem_threadgroup);
    for (uint i = ntg[0]/2; i > 0; i /= 2) {
        if (tpitg[0] < i) {
            buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
        }
        threadgroup_barrier(mem_flags::mem_threadgroup);
    }

    // broadcast
    if (tpitg[0] == 0) {
        buf[0] = buf[0];
    }

    threadgroup_barrier(mem_flags::mem_threadgroup);

    const float max = buf[0];

    // parallel sum
    buf[tpitg[0]] = 0.0f;
    for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
        buf[tpitg[0]] += exp(psrc0[i00] - max);
    }

    // reduce
    threadgroup_barrier(mem_flags::mem_threadgroup);
    for (uint i = ntg[0]/2; i > 0; i /= 2) {
        if (tpitg[0] < i) {
            buf[tpitg[0]] += buf[tpitg[0] + i];
        }
        threadgroup_barrier(mem_flags::mem_threadgroup);
    }

    // broadcast
    if (tpitg[0] == 0) {
        buf[0] = buf[0];
    }

    threadgroup_barrier(mem_flags::mem_threadgroup);

    const float sum = buf[0];

    for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
        pdst[i00] = exp(psrc0[i00] - max) / sum;
    }
}

kernel void kernel_diag_mask_inf(
        device const float * src0,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant       int & n_past,
        uint3 tpig[[thread_position_in_grid]]) {
    const int64_t i02 = tpig[2];
    const int64_t i01 = tpig[1];
    const int64_t i00 = tpig[0];

    if (i00 > n_past + i01) {
        dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
    } else {
        dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
    }
}

kernel void kernel_get_rows_f16(
        device const  void * src0,
        device const   int * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb1,
        uint tpig[[thread_position_in_grid]]) {
    const int i = tpig;
    const int r = ((device int32_t *) src1)[i];

    for (int j = 0; j < ne00; j++) {
        dst[i*nb1 + j] = ((device half *) ((device char *) src0 + r*nb01))[j];
    }
}

kernel void kernel_get_rows_q4_0(
        device const  void * src0,
        device const   int * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb1,
        uint tpig[[thread_position_in_grid]]) {
    const int i = tpig;
    const int r = ((device int32_t *) src1)[i];

    dequantize_row_q4_0(
            (device const block_q4_0 *) ((device char *) src0 + r*nb01),
                       (device float *) ((device char *)  dst + i*nb1), ne00);
}

kernel void kernel_rms_norm(
        device const  void * src0,
        device       float * dst,
        constant   int64_t & ne00,
        constant  uint64_t & nb01,
        constant     float & eps,
        threadgroup float  * sum [[threadgroup(0)]],
        uint tgpig[[threadgroup_position_in_grid]],
        uint tpitg[[thread_position_in_threadgroup]],
        uint   ntg[[threads_per_threadgroup]]) {
    device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);

    // parallel sum
    sum[tpitg] = 0.0f;
    for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
        sum[tpitg] += x[i00] * x[i00];
    }

    // reduce
    threadgroup_barrier(mem_flags::mem_threadgroup);
    for (uint i = ntg/2; i > 0; i /= 2) {
        if (tpitg < i) {
            sum[tpitg] += sum[tpitg + i];
        }
        threadgroup_barrier(mem_flags::mem_threadgroup);
    }

    // broadcast
    if (tpitg == 0) {
        sum[0] /= ne00;
    }

    threadgroup_barrier(mem_flags::mem_threadgroup);

    const float mean  = sum[0];
    const float scale = 1.0f/sqrt(mean + eps);

    device float * y = dst + tgpig*ne00;
    for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
        y[i00] = x[i00] * scale;
    }
}

kernel void kernel_mul_mat_q4_0_f32(
        device const  void * src0,
        device const float * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant   int64_t & ne10,
        constant   int64_t & ne11,
        constant  uint64_t & nb10,
        constant  uint64_t & nb11,
        constant  uint64_t & nb12,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        threadgroup float  * sum [[threadgroup(0)]],
        uint2 tgpig[[threadgroup_position_in_grid]],
        uint2  tpig[[thread_position_in_grid]],
        uint2 tpitg[[thread_position_in_threadgroup]],
        uint2  tptg[[threads_per_threadgroup]]) {
    const int nb = ne00/QK4_0;

    const int8_t m8 = 8;

    const int64_t r0 = tgpig.x;
    const int64_t r1 = tgpig.y;

    device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
    device const float      * y = (device const float      *) src1 + r1*ne10;

    const uint nth = tptg.x*tptg.y;
    const uint ith = tptg.y*tpitg.x + tpitg.y;

    const int ix = tpitg.y/4;           // 0 or 1
    const int iy = tpitg.y - 4*ix;      // 0...3

    const int first = 4 * iy;

    float sumf = 0;

    for (int i = 2*tpitg.x + ix; i < nb; i += 2*tptg.x) {

        const float d = (float)x[i].d;

        device const uint8_t * xl = x[i].qs + first;
        device const float   * yl = y + i * QK4_0 + first;

        float2 acc = {0.0f, 0.0f};

        for (int j = 0; j < 4; ++j) {

            acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8);
            acc[1] += yl[j+16] * ((int8_t)(xl[j] >>  4) - m8);

        }

        sumf += d * (acc[0] + acc[1]);
    }

    sum[ith] = sumf;

    //
    // Accumulate the sum from all threads in the threadgroup
    // This version is slightly faster than the commented out one below,
    // which I copy-pasted from ggerganov's q4_0 dot product for metal.
    //
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%4 == 0) {
        for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%16 == 0) {
        for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith == 0) {
        for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
        dst[r1*ne0 + r0] = sum[0];
    }

    //// accumulate the sum from all threads in the threadgroup
    //threadgroup_barrier(mem_flags::mem_threadgroup);
    //for (uint i = nth/2; i > 0; i /= 2) {
    //    if (ith < i) {
    //        sum[ith] += sum[ith + i];
    //    }
    //    threadgroup_barrier(mem_flags::mem_threadgroup);
    //}

    //if (ith == 0) {
    //    dst[r1*ne0 + r0] = sum[0];
    //}
}

kernel void kernel_mul_mat_f16_f32(
        device const  char * src0,
        device const  char * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant   int64_t & ne10,
        constant   int64_t & ne11,
        constant  uint64_t & nb10,
        constant  uint64_t & nb11,
        constant  uint64_t & nb12,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        threadgroup float  * sum [[threadgroup(0)]],
        uint3 tgpig[[threadgroup_position_in_grid]],
        uint3  tpig[[thread_position_in_grid]],
        uint3 tpitg[[thread_position_in_threadgroup]],
        uint3  tptg[[threads_per_threadgroup]]) {

    const int64_t r0 = tgpig.x;
    const int64_t r1 = tgpig.y;
    const int64_t im = tgpig.z;

    device const half  * x = (device const half  *) (src0 + r0*nb01 + im*nb02);
    device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);

    sum[tpitg.x] = 0.0f;

    for (int i = tpitg.x; i < ne00; i += tptg.x) {
        sum[tpitg.x] += (float) x[i] * (float) y[i];
    }

    // accumulate the sum from all threads in the threadgroup
    threadgroup_barrier(mem_flags::mem_threadgroup);
    for (uint i = tptg.x/2; i > 0; i /= 2) {
        if (tpitg.x < i) {
            sum[tpitg.x] += sum[tpitg.x + i];
        }
        threadgroup_barrier(mem_flags::mem_threadgroup);
    }

    if (tpitg.x == 0) {
        dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
    }
}

kernel void kernel_rope(
        device const  void * src0,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant   int64_t & ne02,
        constant   int64_t & ne03,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant  uint64_t & nb03,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        constant   int64_t & ne2,
        constant   int64_t & ne3,
        constant  uint64_t & nb0,
        constant  uint64_t & nb1,
        constant  uint64_t & nb2,
        constant  uint64_t & nb3,
        constant       int & n_past,
        constant       int & n_dims,
        constant       int & mode,
        uint3 tpig[[thread_position_in_grid]]) {
    const int64_t i3 = tpig[2];
    const int64_t i2 = tpig[1];
    const int64_t i1 = tpig[0];

    const bool is_neox = mode & 2;
    const float theta_scale = pow(10000.0, -2.0f/n_dims);

    const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);

    float theta = (float)p;

    if (!is_neox) {
        for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
            const float cos_theta = cos(theta);
            const float sin_theta = sin(theta);

            theta *= theta_scale;

            device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
            device       float * dst_data  = (device float *)((device char *)  dst + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);

            const float x0 = src[0];
            const float x1 = src[1];

            dst_data[0] = x0*cos_theta - x1*sin_theta;
            dst_data[1] = x0*sin_theta + x1*cos_theta;
        }
    } else {
        // TODO: implement
    }
}

kernel void kernel_cpy_f32_f16(
        device const float * src0,
        device        half * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant   int64_t & ne02,
        constant   int64_t & ne03,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant  uint64_t & nb03,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        constant   int64_t & ne2,
        constant   int64_t & ne3,
        constant  uint64_t & nb0,
        constant  uint64_t & nb1,
        constant  uint64_t & nb2,
        constant  uint64_t & nb3,
        uint3 tgpig[[threadgroup_position_in_grid]],
        uint3 tpitg[[thread_position_in_threadgroup]],
        uint3   ntg[[threads_per_threadgroup]]) {
    const int64_t i03 = tgpig[2];
    const int64_t i02 = tgpig[1];
    const int64_t i01 = tgpig[0];

    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;

    const int64_t i3 = n / (ne2*ne1*ne0);
    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);

    device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

    for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);

        dst_data[i00] = src[0];
    }
}

kernel void kernel_cpy_f32_f32(
        device const float * src0,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant   int64_t & ne02,
        constant   int64_t & ne03,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant  uint64_t & nb03,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        constant   int64_t & ne2,
        constant   int64_t & ne3,
        constant  uint64_t & nb0,
        constant  uint64_t & nb1,
        constant  uint64_t & nb2,
        constant  uint64_t & nb3,
        uint3 tgpig[[threadgroup_position_in_grid]],
        uint3 tpitg[[thread_position_in_threadgroup]],
        uint3   ntg[[threads_per_threadgroup]]) {
    const int64_t i03 = tgpig[2];
    const int64_t i02 = tgpig[1];
    const int64_t i01 = tgpig[0];

    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;

    const int64_t i3 = n / (ne2*ne1*ne0);
    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);

    device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

    for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);

        dst_data[i00] = src[0];
    }
}

//============================================ k-quants ======================================================

#define QK_K 256

typedef struct {
    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
    uint8_t qs[QK_K/4];      // quants
    half d;           // super-block scale for quantized scales
    half dmin;        // super-block scale for quantized mins
} block_q2_k;

typedef struct {
    half d;             // super-block scale for quantized scales
    half dmin;          // super-block scale for quantized mins
    uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
    uint8_t qs[QK_K/2];        // 4--bit quants
} block_q4_k;

typedef struct {
    uint8_t ql[QK_K/2];      // quants, lower 4 bits
    uint8_t qh[QK_K/4];      // quants, upper 2 bits
    int8_t  scales[QK_K/16]; // scales, quantized with 8 bits
    half d;                  // super-block scale
} block_q6_k;

static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
    uchar4 r;
    if (j < 4) {
        r[0] = q[j+0] & 63; r[1] = q[j+4] & 63;
        r[2] = q[j+1] & 63; r[3] = q[j+5] & 63;
    } else {
        r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
        r[1] = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
        r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
        r[3] = (q[j+5] >>  4) | ((q[j+1] >> 6) << 4);
    }
    return r;
}

//========================================== dequantization =============================

static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const float d = x[i].d;
        const float min = x[i].dmin;

        device const uint8_t * q = x[i].qs;

        int is = 0;
        float dl, ml;
        for (int n = 0; n < QK_K; n += 128) {
            int shift = 0;
            for (int j = 0; j < 4; ++j) {

                uint8_t sc = x[i].scales[is++];
                dl = d * (sc & 0xF); ml = min * (sc >> 4);
                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;

                sc = x[i].scales[is++];
                dl = d * (sc & 0xF); ml = min * (sc >> 4);
                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;

                shift += 2;
            }
            q += 32;
        }

    }
}

static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        const float d = x[i].d;
        const float min = x[i].dmin;

        device const uint8_t * q = x[i].qs;
        device const uint8_t * scales = x[i].scales;

        int is = 0;
        for (int j = 0; j < QK_K; j += 64) {
            const uchar4 sc = get_scale_min_k4(is, scales);
            const float d1 = d * sc[0]; const float m1 = min * sc[1];
            const float d2 = d * sc[2]; const float m2 = min * sc[3];
            for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
            for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
            q += 32; is += 2;
        }

    }
}

static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
    assert(k % QK_K == 0);
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {

        device const uint8_t * ql = x[i].ql;
        device const uint8_t * qh = x[i].qh;
        device const int8_t  * sc = x[i].scales;

        const float d = x[i].d;

        for (int n = 0; n < QK_K; n += 128) {
            for (int l = 0; l < 32; ++l) {
                int is = l/16;
                const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
                const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
                const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
                const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
                y[l +  0] = d * sc[is + 0] * q1;
                y[l + 32] = d * sc[is + 2] * q2;
                y[l + 64] = d * sc[is + 4] * q3;
                y[l + 96] = d * sc[is + 6] * q4;
            }
            y  += 128;
            ql += 64;
            qh += 32;
            sc += 8;
        }
    }
}

kernel void kernel_get_rows_q2_k(
        device const  void * src0,
        device const   int * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb1,
        uint tpig[[thread_position_in_grid]]) {
    const int i = tpig;
    const int r = ((device int32_t *) src1)[i];

    dequantize_row_q2_k(
            (device const block_q2_k *) ((device char *) src0 + r*nb01),
                       (device float *) ((device char *)  dst + i*nb1), ne00);
}

kernel void kernel_get_rows_q4_k(
        device const  void * src0,
        device const   int * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb1,
        uint tpig[[thread_position_in_grid]]) {
    const int i = tpig;
    const int r = ((device int32_t *) src1)[i];

    dequantize_row_q4_k(
            (device const block_q4_k *) ((device char *) src0 + r*nb01),
                       (device float *) ((device char *)  dst + i*nb1), ne00);
}

kernel void kernel_get_rows_q6_k(
        device const  void * src0,
        device const   int * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb1,
        uint tpig[[thread_position_in_grid]]) {
    const int i = tpig;
    const int r = ((device int32_t *) src1)[i];

    dequantize_row_q6_k(
            (device const block_q6_k *) ((device char *) src0 + r*nb01),
                       (device float *) ((device char *)  dst + i*nb1), ne00);
}

//====================================== dot products =========================

kernel void kernel_mul_mat_q2_k_f32(
        device const  void * src0,
        device const float * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant   int64_t & ne10,
        constant   int64_t & ne11,
        constant  uint64_t & nb10,
        constant  uint64_t & nb11,
        constant  uint64_t & nb12,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        threadgroup float  * sum [[threadgroup(0)]],
        uint2 tgpig[[threadgroup_position_in_grid]],
        uint2  tpig[[thread_position_in_grid]],               // we don't use this for now
        uint2 tpitg[[thread_position_in_threadgroup]],
        uint2  tptg[[threads_per_threadgroup]]) {

    const int nb = ne00/QK_K;

    const int64_t r0 = tgpig.x;
    const int64_t r1 = tgpig.y;

    device const block_q2_k * x = (device const block_q2_k *) src0 + r0*nb;
    device const float     * yy = (device const float      *) src1 + r1*ne10;

    const int nth = tptg.x*tptg.y;
    const int ith = tptg.y*tpitg.x + tpitg.y;


    const int tid = tpitg.y;    // 0...16
    const int il  = tid/4;      // 0...3
    const int ir  = tid%4;      // 0...3
    const int ip  = il/2;       // 0 or 1
    const int shift1 = 4*(il%2);// 0 or 4
    const int shift2 = shift1+2;// 2 or 6
    const int n   = 8;
    const int is  = 4*il + (n*ir)/16;

    sum[ith] = 0.0f;

    float sumf = 0;
    for (int i = tpitg.x; i < nb; i += tptg.x) {

        device const uint8_t * q = x[i].qs + 32*ip + n*ir;
        device const uint8_t * scales = x[i].scales + is;

        uint8_t d1 = scales[0] & 0xF;
        uint8_t m1 = scales[0] >>  4;
        uint8_t d2 = scales[2] & 0xF;
        uint8_t m2 = scales[2] >>  4;

        device const float   * y = yy + i*QK_K + 64*il + n*ir;

        const float dall = (float)x[i].d;
        const float dmin = (float)x[i].dmin;

        float4 s = {0.f, 0.f, 0.f, 0.f};
        for (int l = 0; l < n; ++l) {
            s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0];
            s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32];
        }
        sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2);


    }
    sum[ith] = sumf;

    //
    // Accumulate the sum from all threads in the threadgroup
    // This version is slightly faster than the commented out one below,
    // which I copy-pasted from ggerganov's q4_0 dot product for metal.
    //
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%4 == 0) {
        for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%16 == 0) {
        for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith == 0) {
        for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
        dst[r1*ne0 + r0] = sum[0];
    }

    //// accumulate the sum from all threads in the threadgroup
    //threadgroup_barrier(mem_flags::mem_threadgroup);
    //for (uint i = nth/2; i > 0; i /= 2) {
    //    if (ith < i) {
    //        sum[ith] += sum[ith + i];
    //    }
    //    threadgroup_barrier(mem_flags::mem_threadgroup);
    //}

    //if (ith == 0) {
    //    dst[r1*ne0 + r0] = sum[0];
    //}
}

kernel void kernel_mul_mat_q4_k_f32(
        device const  void * src0,
        device const float * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant   int64_t & ne10,
        constant   int64_t & ne11,
        constant  uint64_t & nb10,
        constant  uint64_t & nb11,
        constant  uint64_t & nb12,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        threadgroup float  * sum [[threadgroup(0)]],
        uint2 tgpig[[threadgroup_position_in_grid]],
        uint2  tpig[[thread_position_in_grid]],               // we don't use this for now
        uint2 tpitg[[thread_position_in_threadgroup]],
        uint2  tptg[[threads_per_threadgroup]]) {

    const int nb = ne00/QK_K;

    const int64_t r0 = tgpig.x;
    const int64_t r1 = tgpig.y;

    device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
    device const float     * yy = (device const float      *) src1 + r1*ne10;

    const uint nth = tptg.x*tptg.y;
    const uint ith = tptg.y*tpitg.x + tpitg.y;

    const int tid = tpitg.y;   // 0...16
    const int il  = tid/4;     // 0...3
    const int ir  = tid%4;     // 0...3
    const int n   = 8;
    const int is  = 2*il;

    sum[ith] = 0.0f;

    float sumf = 0;
    for (int i = tpitg.x; i < nb; i += tptg.x) {

        device const uint8_t * q = (x + i)->qs + 32*il + n*ir;
        device const float   * y = yy + i*QK_K + 64*il + n*ir;
        device const uint8_t * scales = (x + i)->scales;

        const float dall = (float)((x + i)->d);
        const float dmin = (float)((x + i)->dmin);

        const uchar4 sc = get_scale_min_k4(is, scales);

        float4 s = {0.f, 0.f, 0.f, 0.f};
        for (int l = 0; l < n; ++l) {
            s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0];
            s[2] += y[l+32] * (q[l] >>  4); s[3] += y[l+32];
        }
        sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]);

    }
    sum[ith] = sumf;

    //
    // Accumulate the sum from all threads in the threadgroup
    // This version is slightly faster than the commented out one below,
    // which I copy-pasted from ggerganov's q4_0 dot product for metal.
    //
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%4 == 0) {
        for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%16 == 0) {
        for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith == 0) {
        for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
        dst[r1*ne0 + r0] = sum[0];
    }

    //// accumulate the sum from all threads in the threadgroup
    //threadgroup_barrier(mem_flags::mem_threadgroup);
    //for (uint i = nth/2; i > 0; i /= 2) {
    //    if (ith < i) {
    //        sum[ith] += sum[ith + i];
    //    }
    //    threadgroup_barrier(mem_flags::mem_threadgroup);
    //}

    //if (ith == 0) {
    //    dst[r1*ne0 + r0] = sum[0];
    //}
}

kernel void kernel_mul_mat_q6_k_f32(
        device const  void * src0,
        device const float * src1,
        device       float * dst,
        constant   int64_t & ne00,
        constant   int64_t & ne01,
        constant  uint64_t & nb00,
        constant  uint64_t & nb01,
        constant  uint64_t & nb02,
        constant   int64_t & ne10,
        constant   int64_t & ne11,
        constant  uint64_t & nb10,
        constant  uint64_t & nb11,
        constant  uint64_t & nb12,
        constant   int64_t & ne0,
        constant   int64_t & ne1,
        threadgroup float  * sum [[threadgroup(0)]],
        uint2 tgpig[[threadgroup_position_in_grid]],
        uint2  tpig[[thread_position_in_grid]],               // we don't use this for now
        uint2 tpitg[[thread_position_in_threadgroup]],
        uint2  tptg[[threads_per_threadgroup]]) {

    const uint8_t kmask1 = 0x03;
    const uint8_t kmask2 = 0x0C;
    const uint8_t kmask3 = 0x30;
    const uint8_t kmask4 = 0xC0;

    const int nb = ne00/QK_K;

    const int64_t r0 = tgpig.x;
    const int64_t r1 = tgpig.y;

    device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
    device const float     * yy = (device const float      *) src1 + r1*ne10;

    const uint nth = tptg.x*tptg.y;
    const uint ith = tptg.y*tpitg.x + tpitg.y;

    const int step = QK_K / tptg.y;     // we expect this to be 16
    const int iqs  = step * tpitg.y;    // 0...240 in steps of 16
    const int ip   = iqs / 128;         // 0 or 1
    const int il   = (iqs - 128*ip)/16; // 0...7
    const int n    = 4;
    const int is   = 8*ip + (n*il)/16;

    float sumf = 0;
    for (int i = tpitg.x; i < nb; i += tptg.x) {

        device const uint8_t * ql = x[i].ql + 64*ip + n*il;
        device const uint8_t * qh = x[i].qh + 32*ip + n*il;
        device const int8_t  * sc = x[i].scales + is;

        device const float * y = yy + i * QK_K + 128*ip + n*il;

        const float dall = x[i].d;

        float4 sums = {0.f, 0.f, 0.f, 0.f};
        for (int l = 0; l < n; ++l) {
            sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
            sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
            sums[2] += y[l+64] * ((int8_t)((ql[l+ 0]  >> 4) | ((qh[l] & kmask3) << 0)) - 32);
            sums[3] += y[l+96] * ((int8_t)((ql[l+32]  >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
        }

        sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);

    }

    sum[ith] = sumf;

    //
    // Accumulate the sum from all threads in the threadgroup
    //
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%4 == 0) {
        for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith%16 == 0) {
        for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
    }
    threadgroup_barrier(mem_flags::mem_threadgroup);
    if (ith == 0) {
        for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
        dst[r1*ne0 + r0] = sum[0];
    }

}