aboutsummaryrefslogtreecommitdiff
path: root/llama.cpp
blob: 8c1d65778be8bb844588cd4e54761dc4bd121cd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
// Defines fileno on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <cstdint>
#include <cstdio>
#endif

#include "llama_util.h"
#include "llama.h"

#include "ggml.h"

#include <array>
#include <ctime>
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <cassert>
#include <cstring>
#include <climits>
#include <memory>
#include <algorithm>
#include <initializer_list>
#include <thread>
#include <atomic>
#include <mutex>
#include <sstream>

#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16


// available llama models
enum e_model {
    MODEL_UNKNOWN,
    MODEL_7B,
    MODEL_13B,
    MODEL_30B,
    MODEL_65B,
};

static const size_t MB = 1024*1024;

// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
//       needs modifications in ggml

static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
{
    static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
        { MODEL_7B,    512ull * MB },
        { MODEL_13B,   512ull * MB },
        { MODEL_30B,   512ull * MB },
        { MODEL_65B,   512ull * MB },
    };
    return _MEM_REQ_SCRATCH0;
}

static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{
    static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
        { MODEL_7B,    512ull * MB },
        { MODEL_13B,   512ull * MB },
        { MODEL_30B,   512ull * MB },
        { MODEL_65B,   512ull * MB },
    };
    return _MEM_REQ_SCRATCH1;
}

// 2*n_embd*n_ctx*n_layer*sizeof(float16)
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
{
    static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
        { MODEL_7B,   1026ull * MB },
        { MODEL_13B,  1608ull * MB },
        { MODEL_30B,  3124ull * MB },
        { MODEL_65B,  5120ull * MB },
    };
    return _MEM_REQ_KV_SELF;
}

// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{
    static std::map<e_model, size_t> _MEM_REQ_EVAL = {
        { MODEL_7B,   768ull * MB },
        { MODEL_13B, 1024ull * MB },
        { MODEL_30B, 1280ull * MB },
        { MODEL_65B, 1536ull * MB },
    };
    return _MEM_REQ_EVAL;
}

// default hparams (LLaMA 7B)
struct llama_hparams {
    uint32_t n_vocab = 32000;
    uint32_t n_ctx   = 512;   // this is provided as user input?
    uint32_t n_embd  = 4096;
    uint32_t n_mult  = 256;
    uint32_t n_head  = 32;
    uint32_t n_layer = 32;
    uint32_t n_rot   = 64;
    enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;

    bool operator!=(const llama_hparams & other) const {
        return memcmp(this, &other, sizeof(llama_hparams));
    }
};

struct llama_layer {
    // normalization
    struct ggml_tensor * attention_norm;

    // attention
    struct ggml_tensor * wq;
    struct ggml_tensor * wk;
    struct ggml_tensor * wv;
    struct ggml_tensor * wo;

    // normalization
    struct ggml_tensor * ffn_norm;

    // ff
    struct ggml_tensor * w1;
    struct ggml_tensor * w2;
    struct ggml_tensor * w3;
};

struct llama_kv_cache {
    struct ggml_tensor * k;
    struct ggml_tensor * v;

    struct ggml_context * ctx = NULL;

    llama_buffer buf;

    int n; // number of tokens currently in the cache

    ~llama_kv_cache() {
        if (ctx) {
            ggml_free(ctx);
        }
    }
};

struct llama_model {
    e_model type = MODEL_UNKNOWN;

    llama_hparams hparams;

    struct ggml_tensor * tok_embeddings;

    struct ggml_tensor * norm;
    struct ggml_tensor * output;

    std::vector<llama_layer> layers;

    // context
    struct ggml_context * ctx = NULL;

    // key + value cache for the self attention
    // TODO: move to llama_state
    struct llama_kv_cache kv_self;

    // the model memory buffer
    llama_buffer buf;

    // model memory mapped file
    std::unique_ptr<llama_mmap> mapping;

    // objects representing data potentially being locked in memory
    llama_mlock mlock_buf;
    llama_mlock mlock_mmap;

    // for quantize-stats only
    std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;

    ~llama_model() {
        if (ctx) {
            ggml_free(ctx);
        }
    }
};

struct llama_vocab {
    using id    = int32_t;
    using token = std::string;

    struct token_score {
        token tok;
        float score;
    };

    std::unordered_map<token, id> token_to_id;
    std::vector<token_score> id_to_token;
};

struct llama_context {
    std::mt19937 rng;

    int64_t t_load_us = 0;
    int64_t t_start_us = 0;
    bool has_evaluated_once = false;

    int64_t t_sample_us = 0;
    int64_t t_eval_us   = 0;
    int64_t t_p_eval_us = 0;

    int32_t n_sample = 0; // number of tokens sampled
    int32_t n_eval   = 0; // number of eval calls
    int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)

    llama_model model;
    llama_vocab vocab;

    size_t mem_per_token = 0;

    // decode output (2-dimensional array: [n_tokens][n_vocab])
    std::vector<float> logits;
    bool logits_all = false;

    // input embedding (1-dimensional array: [n_embd])
    std::vector<float> embedding;

    // memory buffers used to evaluate the model
    // TODO: move in llama_state
    llama_buffer buf_compute;
    llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];

    int    buf_last = 0;
    size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };

    void use_buf(struct ggml_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
        size_t last_size = 0;

        if (i == -1) {
            last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
        } else {
            auto & buf = buf_scratch[i];
            last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
        }

        if (buf_last >= 0) {
            buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
        }

        buf_last = i;
#else
        (void) i;
        (void) ctx;
#endif
    }

    size_t get_buf_max_mem(int i) const {
#if defined(LLAMA_USE_SCRATCH)
        return buf_max_size[i];
#else
        (void) i;
        return 0;
#endif
    }
};

template <typename T>
static T checked_mul(T a, T b) {
    T ret = a * b;
    if (a != 0 && ret / a != b) {
        throw format("overflow multiplying %llu * %llu",
                     (unsigned long long) a, (unsigned long long) b);
    }
    return ret;
}

static size_t checked_div(size_t a, size_t b) {
    if (b == 0 || a % b != 0) {
        throw format("error dividing %zu / %zu", a, b);
    }
    return a / b;
}

static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
    char buf[256];
    snprintf(buf, sizeof(buf), "%5u", ne.at(0));
    for (size_t i = 1; i < ne.size(); i++) {
        snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
    }
    return buf;
}

static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
    size_t size = ggml_type_size(type);
    for (uint32_t dim : ne) {
        size = checked_mul<size_t>(size, dim);
    }
    return size / ggml_blck_size(type);
}

struct llama_load_tensor_shard {
    std::vector<uint32_t> ne;
    size_t size;
    enum ggml_type type;
    size_t file_idx;
    size_t file_off;

    void calc_size() {
        size = llama_calc_tensor_size(ne, type);
    }
};

enum llama_split_type {
    SPLIT_NONE,
    SPLIT_BY_COLUMNS,
    SPLIT_BY_ROWS
};

struct llama_load_tensor {
    std::vector<llama_load_tensor_shard> shards;

    std::string name;
    enum ggml_type type = GGML_TYPE_F32;
    llama_split_type split_type = SPLIT_NONE;
    std::vector<uint32_t> ne;
    size_t size;
    struct ggml_tensor * ggml_tensor = NULL;
    uint8_t * data;

    llama_load_tensor(const std::string & name) : name(name) {}

    void calc_all() {
        calc_type();
        calc_split_type();
        calc_ne();
        calc_size();
    }

    void calc_type() {
        const auto & first_shard = shards.at(0);
        for (const auto & shard : shards) {
            if (shard.type != first_shard.type) {
                throw format("inconsistent tensor shard type in '%s'", name.c_str());
            }
        }
        type = first_shard.type;
    }

    void calc_split_type() {
        if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
            shards.size() == 1) { // only one file?
            split_type = SPLIT_NONE;
        } else if (name.find("tok_embeddings.") == 0 ||
            name.find(".attention.wo.weight") != std::string::npos ||
            name.find(".feed_forward.w2.weight") != std::string::npos) {
            split_type = SPLIT_BY_COLUMNS;
        } else {
            split_type = SPLIT_BY_ROWS;
        }
    }

    void calc_ne() {
        const auto & first_shard = shards.at(0);
        for (const auto & shard : shards) {
            if (shard.ne != first_shard.ne) {
                throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
                             name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
            }
        }
        ne = first_shard.ne;
        LLAMA_ASSERT(shards.size() <= UINT32_MAX);
        uint32_t n_shards = (uint32_t) shards.size();
        switch (split_type) {
            case SPLIT_NONE:
                ne = first_shard.ne;
                break;
            case SPLIT_BY_COLUMNS:
                ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
                      first_shard.ne[1]};
                break;
            case SPLIT_BY_ROWS:
                ne = {first_shard.ne[0],
                      checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
                break;
        }
    }

    void calc_size() {
        size = llama_calc_tensor_size(ne, type);
    }
};

struct llama_load_tensors_map {
    // tensors is kept in a separate vector to preserve file order
    std::vector<llama_load_tensor> tensors;
    std::unordered_map<std::string, size_t> name_to_idx;
};

enum llama_file_version {
    LLAMA_FILE_VERSION_GGML,
    LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
    LLAMA_FILE_VERSION_GGJT_V1, // added padding
};

struct llama_file_loader {
    llama_file file;
    llama_file_version file_version;
    llama_hparams hparams;
    llama_vocab vocab;

    llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
        : file(fname, "rb") {
        fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
        read_magic();
        read_hparams();
        read_vocab();
        read_tensor_metadata(file_idx, tensors_map);
    }
    void read_magic() {
        uint32_t magic = file.read_u32();
        uint32_t version = 0;

        if (magic != 'ggml') {
            version = file.read_u32();
        }

        if (magic == 'ggml' && version == 0) {
            file_version = LLAMA_FILE_VERSION_GGML;
        } else if (magic == 'ggmf' && version == 1) {
            file_version = LLAMA_FILE_VERSION_GGMF_V1;
        } else if (magic == 'ggjt' && version == 1) {
            file_version = LLAMA_FILE_VERSION_GGJT_V1;
        } else {
            throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
                         magic, version);
        }
    }
    void read_hparams() {
        hparams.n_vocab = file.read_u32();
        hparams.n_embd = file.read_u32();
        hparams.n_mult = file.read_u32();
        hparams.n_head = file.read_u32();
        hparams.n_layer = file.read_u32();
        hparams.n_rot = file.read_u32();
        hparams.ftype = (enum llama_ftype) file.read_u32();
    }
    void read_vocab() {
        vocab.id_to_token.resize(hparams.n_vocab);

        for (uint32_t i = 0; i < hparams.n_vocab; i++) {
            uint32_t len = file.read_u32();
            std::string word = file.read_string(len);

            float score = 0.0f;
            if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
                file.read_raw(&score, sizeof(score));
            }

            vocab.token_to_id[word] = i;

            auto & tok_score = vocab.id_to_token[i];
            tok_score.tok = std::move(word);
            tok_score.score = score;
        }
    }
    void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
        while (file.tell() < file.size) {
            llama_load_tensor_shard shard;
            uint32_t n_dims = file.read_u32();
            uint32_t name_len = file.read_u32();
            shard.type = (enum ggml_type) file.read_u32();
            shard.ne.resize(n_dims);
            file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
            std::string name = file.read_string(name_len);
            if (n_dims < 1 || n_dims > 2) {
                throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
            }
            switch (shard.type) {
                case GGML_TYPE_F32:
                case GGML_TYPE_F16:
                case GGML_TYPE_Q4_0:
                case GGML_TYPE_Q4_1:
                case GGML_TYPE_Q4_2:
                case GGML_TYPE_Q4_3:
                    break;
                default: {
                    throw format("unrecognized tensor type %u\n", shard.type);
                }
            }

            if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
                // skip to the next multiple of 32 bytes
                file.seek(-file.tell() & 31, SEEK_CUR);
            }
            shard.file_idx = file_idx;
            shard.file_off = file.tell();

            shard.calc_size();
            file.seek(shard.size, SEEK_CUR);

            auto it = tensors_map.name_to_idx.find(name);
            size_t idx;
            if (it != tensors_map.name_to_idx.end()) {
                idx = it->second;
            } else {
                tensors_map.tensors.emplace_back(name);
                idx = tensors_map.tensors.size() - 1;
                tensors_map.name_to_idx.emplace(name, idx);
            }
            tensors_map.tensors.at(idx).shards.push_back(shard);
        }
    }
};

struct llama_file_saver {
    llama_file file;
    llama_file_loader * any_file_loader;
    llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
        : file(fname, "wb"), any_file_loader(any_file_loader) {
        fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
        write_magic();
        write_hparams(new_ftype);
        write_vocab();
    }
    void write_magic() {
        file.write_u32('ggjt'); // magic
        file.write_u32(1); // version
    }
    void write_hparams(enum llama_ftype new_ftype) {
        const llama_hparams & hparams = any_file_loader->hparams;
        file.write_u32(hparams.n_vocab);
        file.write_u32(hparams.n_embd);
        file.write_u32(hparams.n_mult);
        file.write_u32(hparams.n_head);
        file.write_u32(hparams.n_layer);
        file.write_u32(hparams.n_rot);
        file.write_u32(new_ftype);
    }
    void write_vocab() {
        if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
            fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
        }
        uint32_t n_vocab = any_file_loader->hparams.n_vocab;
        for (uint32_t i = 0; i < n_vocab; i++) {
            const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
            file.write_u32((uint32_t) token_score.tok.size());
            file.write_raw(token_score.tok.data(), token_score.tok.size());
            file.write_raw(&token_score.score, sizeof(token_score.score));
        }
    }
    void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
        switch (new_type) {
            case GGML_TYPE_F32:
            case GGML_TYPE_F16:
            case GGML_TYPE_Q4_0:
            case GGML_TYPE_Q4_1:
            case GGML_TYPE_Q4_2:
            case GGML_TYPE_Q4_3:
                break;
            default: LLAMA_ASSERT(false);
        }
        file.write_u32((uint32_t) tensor.ne.size());
        file.write_u32((uint32_t) tensor.name.size());
        file.write_u32(new_type);
        file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
        file.write_raw(tensor.name.data(), tensor.name.size());
        file.seek(-file.tell() & 31, SEEK_CUR);
        LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
        file.write_raw(new_data, new_size);
    }
};

struct llama_model_loader {
    std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
    llama_load_tensors_map tensors_map;
    bool use_mmap;
    size_t num_ggml_tensors_created = 0;
    struct ggml_context * ggml_ctx = NULL;
    std::unique_ptr<llama_mmap> mapping;

    llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
        auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
        file_loaders.emplace_back(first_file);
        uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
        for (uint32_t i = 1; i < n_parts; i++) {
            std::string fname = fname_base + "." + std::to_string(i);
            auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
            file_loaders.emplace_back(ith_file);
            if (ith_file->hparams != first_file->hparams) {
                throw format("llama.cpp: hparams inconsistent between files");
            }
        }
        if (!llama_mmap::SUPPORTED) {
            use_mmap = false;
        }
        if (use_mmap && alignment_prevents_mmap()) {
            fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
            use_mmap = false;
        }
        this->use_mmap = use_mmap;
        for (llama_load_tensor & lt : tensors_map.tensors) {
            lt.calc_all();
        }
    }

    bool alignment_prevents_mmap() {
        for (const llama_load_tensor & lt : tensors_map.tensors) {
            for (const llama_load_tensor_shard & shard : lt.shards) {
                if (shard.file_off & 3) {
                    return true;
                }
            }
        }
        return false;
    }

    uint32_t guess_n_parts() const {
        auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
        if (it == tensors_map.name_to_idx.end()) {
            throw std::string("missing tok_embeddings.weight");
        }
        const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
        return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
    }

    void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
        *ctx_size_p = *mmapped_size_p = 0;
        for (const llama_load_tensor & lt : tensors_map.tensors) {
            *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
            *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
        }
    }

    struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
        auto it = tensors_map.name_to_idx.find(name);
        if (it == tensors_map.name_to_idx.end()) {
            throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
        }
        llama_load_tensor & lt = tensors_map.tensors.at(it->second);
        if (lt.ne != ne) {
            throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
                         name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
        }

        return get_tensor_for(lt);
    }

    struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
        struct ggml_tensor * tensor;
        if (lt.ne.size() == 2) {
            tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
        } else {
            LLAMA_ASSERT(lt.ne.size() == 1);
            tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
        }
        LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
        lt.ggml_tensor = tensor;
        num_ggml_tensors_created++;
        return tensor;
    }

    void done_getting_tensors() {
        if (num_ggml_tensors_created != tensors_map.tensors.size()) {
            throw std::string("llama.cpp: file contained more tensors than expected");
        }
    }

    void load_all_data(llama_progress_callback progress_callback, void *  progress_callback_user_data, llama_mlock * lmlock) {
        size_t data_size = 0;
        for (const llama_load_tensor & lt : tensors_map.tensors) {
            data_size += lt.size;
        }

        if (use_mmap) {
            mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
            if (!lmlock) {
                // Don't call the callback since the actual loading will be lazy
                // and we can't measure it.
                progress_callback = NULL;
            }
            if (lmlock) {
                lmlock->init(mapping->addr);
            }
        }

        size_t done_size = 0;
        for (llama_load_tensor & lt : tensors_map.tensors) {
            if (progress_callback) {
                progress_callback((float) done_size / data_size, progress_callback_user_data);
            }
            LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
            lt.data = (uint8_t *) lt.ggml_tensor->data;
            load_data_for(lt);
            lt.ggml_tensor->data = lt.data;
            done_size += lt.size;
            if (use_mmap && lmlock) {
                lmlock->grow_to(done_size);
            }
        }
        if (progress_callback) {
            progress_callback(1.0f, progress_callback_user_data);
        }
    }

    void load_data_for(llama_load_tensor & lt) {
        if (use_mmap) {
            LLAMA_ASSERT(lt.shards.size() == 1);
            lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
        } else if (lt.split_type == SPLIT_NONE) {
            llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
            file.seek(lt.shards.at(0).file_off, SEEK_SET);
            file.read_raw(lt.data, lt.size);
        } else if (lt.split_type == SPLIT_BY_ROWS) {
            size_t offset = 0;
            for (llama_load_tensor_shard & shard : lt.shards) {
                llama_file & file = file_loaders.at(shard.file_idx)->file;
                file.seek(shard.file_off, SEEK_SET);
                file.read_raw(lt.data + offset, shard.size);
                offset += shard.size;
            }
            LLAMA_ASSERT(offset == lt.size);
        } else if (lt.split_type == SPLIT_BY_COLUMNS) {
            // Let's load the data into temporary buffers to ensure the OS performs large loads.
            std::vector<llama_buffer> tmp_bufs;
            tmp_bufs.resize(lt.shards.size());
            for (size_t i = 0; i < lt.shards.size(); i++) {
                llama_load_tensor_shard & shard = lt.shards.at(i);
                llama_file & file = file_loaders.at(shard.file_idx)->file;
                file.seek(shard.file_off, SEEK_SET);
                tmp_bufs.at(i).resize(shard.size);
                file.read_raw(tmp_bufs.at(i).addr, shard.size);
            }
            // Then reshape.
            size_t num_rows = lt.ne.at(1);
            size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
            size_t out_offset = 0;
            for (size_t row = 0; row < num_rows; row++) {
                for (llama_buffer & tmp_buf : tmp_bufs) {
                    memcpy(lt.data + out_offset,
                           tmp_buf.addr + row * per_shard_row_size,
                           per_shard_row_size);
                    out_offset += per_shard_row_size;
                }
            }
            LLAMA_ASSERT(out_offset == lt.size);
        }
        if (0) {
            print_checksum(lt);
        }
    }

    static void print_checksum(llama_load_tensor & lt) {
        uint32_t sum = 0;
        for (size_t i = 0; i < lt.size; i++) {
            uint8_t byte = lt.data[i];
            sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
        }
        fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
                llama_format_tensor_shape(lt.ne).c_str(), lt.size);
    }

};


//
// kv cache
//

static bool kv_cache_init(
        const struct llama_hparams & hparams,
             struct llama_kv_cache & cache,
                         ggml_type   wtype,
                               int   n_ctx) {
    const int n_embd  = hparams.n_embd;
    const int n_layer = hparams.n_layer;

    const int64_t n_mem      = (int64_t)n_layer*n_ctx;
    const int64_t n_elements = n_embd*n_mem;

    cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);

    struct ggml_init_params params;
    params.mem_size   = cache.buf.size;
    params.mem_buffer = cache.buf.addr;
    params.no_alloc   = false;

    cache.ctx = ggml_init(params);

    if (!cache.ctx) {
        fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
        return false;
    }

    cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
    cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);

    return true;
}

struct llama_context_params llama_context_default_params() {
    struct llama_context_params result = {
        /*.n_ctx                       =*/ 512,
        /*.n_parts                     =*/ -1,
        /*.seed                        =*/ 0,
        /*.f16_kv                      =*/ false,
        /*.logits_all                  =*/ false,
        /*.vocab_only                  =*/ false,
        /*.use_mmap                    =*/ true,
        /*.use_mlock                   =*/ false,
        /*.embedding                   =*/ false,
        /*.progress_callback           =*/ nullptr,
        /*.progress_callback_user_data =*/ nullptr,
    };

    return result;
}

bool llama_mmap_supported() {
    return llama_mmap::SUPPORTED;
}

bool llama_mlock_supported() {
    return llama_mlock::SUPPORTED;
}

//
// model loading
//

static const char *llama_file_version_name(llama_file_version version) {
    switch (version) {
        case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
        case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
        case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
        default: LLAMA_ASSERT(false);
    }
}

static const char *llama_ftype_name(enum llama_ftype ftype) {
    switch (ftype) {
        case LLAMA_FTYPE_ALL_F32:     return "all F32";
        case LLAMA_FTYPE_MOSTLY_F16:  return "mostly F16";
        case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
        case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
        case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
                                      return "mostly Q4_1, some F16";
        case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2";
        case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3";
        default:                      return "unknown, may not work";
    }
}

static const char *llama_model_type_name(e_model type) {
    switch (type) {
        case MODEL_7B: return "7B";
        case MODEL_13B: return "13B";
        case MODEL_30B: return "30B";
        case MODEL_65B: return "65B";
        default: LLAMA_ASSERT(false);
    }
}

static void llama_model_load_internal(
        const std::string & fname,
        llama_context & lctx,
        int n_ctx,
        ggml_type memory_type,
        bool use_mmap,
        bool use_mlock,
        bool vocab_only,
        llama_progress_callback progress_callback,
        void * progress_callback_user_data) {

    lctx.t_start_us = ggml_time_us();

    std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));

    lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
    auto & model = lctx.model;
    model.hparams = ml->file_loaders.at(0)->hparams;
    llama_file_version file_version = ml->file_loaders.at(0)->file_version;
    auto & hparams = model.hparams;
    uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;

    {
        switch (hparams.n_layer) {
            case 32: model.type = e_model::MODEL_7B; break;
            case 40: model.type = e_model::MODEL_13B; break;
            case 60: model.type = e_model::MODEL_30B; break;
            case 80: model.type = e_model::MODEL_65B; break;
        }

        hparams.n_ctx = n_ctx;
    }

    {
        fprintf(stderr, "%s: format     = %s\n",  __func__, llama_file_version_name(file_version));
        fprintf(stderr, "%s: n_vocab    = %u\n",  __func__, hparams.n_vocab);
        fprintf(stderr, "%s: n_ctx      = %u\n",  __func__, hparams.n_ctx);
        fprintf(stderr, "%s: n_embd     = %u\n",  __func__, hparams.n_embd);
        fprintf(stderr, "%s: n_mult     = %u\n",  __func__, hparams.n_mult);
        fprintf(stderr, "%s: n_head     = %u\n",  __func__, hparams.n_head);
        fprintf(stderr, "%s: n_layer    = %u\n",  __func__, hparams.n_layer);
        fprintf(stderr, "%s: n_rot      = %u\n",  __func__, hparams.n_rot);
        fprintf(stderr, "%s: ftype      = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
        fprintf(stderr, "%s: n_ff       = %u\n",  __func__, n_ff);
        fprintf(stderr, "%s: n_parts    = %zu\n", __func__, ml->file_loaders.size());
        fprintf(stderr, "%s: model size = %s\n",  __func__, llama_model_type_name(model.type));
    }

    if (vocab_only) {
        return;
    }

    auto & ctx = model.ctx;

    size_t ctx_size, mmapped_size;
    ml->calc_sizes(&ctx_size, &mmapped_size);
    fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);

    // print memory requirements
    {
        const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;

        // this is the total memory required to run the inference
        const size_t mem_required =
            ctx_size +
            mmapped_size +
            MEM_REQ_SCRATCH0().at(model.type) +
            MEM_REQ_SCRATCH1().at(model.type) +
            MEM_REQ_EVAL().at(model.type);

        // this is the memory required by one llama_state
        const size_t mem_required_state =
            scale*MEM_REQ_KV_SELF().at(model.type);

        fprintf(stderr, "%s: mem required  = %7.2f MB (+ %7.2f MB per state)\n", __func__,
                mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
    }

    // create the ggml context
    {
        lctx.model.buf.resize(ctx_size);
        if (use_mlock) {
            lctx.model.mlock_buf.init(lctx.model.buf.addr);
            lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
        }

        struct ggml_init_params params = {
            /*.mem_size   =*/ lctx.model.buf.size,
            /*.mem_buffer =*/ lctx.model.buf.addr,
            /*.no_alloc   =*/ ml->use_mmap,
        };

        model.ctx = ggml_init(params);
        if (!model.ctx) {
            throw format("ggml_init() failed");
        }
    }

    // prepare memory for the weights
    {
        const auto & hparams = model.hparams;

        const uint32_t n_embd  = hparams.n_embd;
        const uint32_t n_layer = hparams.n_layer;
        const uint32_t n_vocab = hparams.n_vocab;

        ml->ggml_ctx = ctx;

        model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
        model.norm           = ml->get_tensor("norm.weight",           {n_embd});
        model.output         = ml->get_tensor("output.weight",         {n_embd, n_vocab});

        model.layers.resize(n_layer);
        for (uint32_t i = 0; i < n_layer; ++i) {
            auto & layer = model.layers[i];

            std::string layers_i = "layers." + std::to_string(i);

            layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});

            layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
            layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
            layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
            layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});

            layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});

            layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd,   n_ff});
            layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", {  n_ff,   n_embd});
            layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff});
        }
    }

    ml->done_getting_tensors();

    // populate `tensors_by_name`
    for (llama_load_tensor & lt : ml->tensors_map.tensors) {
        model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
    }

    ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);

    model.mapping = std::move(ml->mapping);

    // loading time will be recalculate after the first eval, so
    // we take page faults deferred by mmap() into consideration
    lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
}

static bool llama_model_load(
        const std::string & fname,
        llama_context & lctx,
        int n_ctx,
        ggml_type memory_type,
        bool use_mmap,
        bool use_mlock,
        bool vocab_only,
        llama_progress_callback progress_callback,
        void *progress_callback_user_data) {
    try {
        llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
                                  vocab_only, progress_callback, progress_callback_user_data);
        return true;
    } catch (const std::string & err) {
        fprintf(stderr, "error loading model: %s\n", err.c_str());
        return false;
    }
}

// evaluate the transformer
//
//   - lctx:      llama context
//   - tokens:    new batch of tokens to process
//   - n_past:    the context size so far
//   - n_threads: number of threads to use
//
static bool llama_eval_internal(
        llama_context & lctx,
    const llama_token * tokens,
            const int   n_tokens,
            const int   n_past,
            const int   n_threads) {
    const int64_t t_start_us = ggml_time_us();

    const int N = n_tokens;

    const auto & model   = lctx.model;
    const auto & hparams = model.hparams;

    auto & kv_self = model.kv_self;

    LLAMA_ASSERT(!!kv_self.ctx);

    const int n_embd  = hparams.n_embd;
    const int n_layer = hparams.n_layer;
    const int n_ctx   = hparams.n_ctx;
    const int n_head  = hparams.n_head;
    const int n_vocab = hparams.n_vocab;
    const int n_rot   = hparams.n_embd/hparams.n_head;

    auto & mem_per_token = lctx.mem_per_token;
    auto & buf_compute   = lctx.buf_compute;

    struct ggml_init_params params = {
        /*.mem_size   =*/ buf_compute.size,
        /*.mem_buffer =*/ buf_compute.addr,
        /*.no_alloc   =*/ false,
    };

    struct ggml_context * ctx0 = ggml_init(params);

    // for big prompts, if BLAS is enabled, it is better to use only one thread
    // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
    ggml_cgraph gf = {};
    gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_cublas() ? 1 : n_threads;

    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
    memcpy(embd->data, tokens, N*ggml_element_size(embd));

    struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);

    for (int il = 0; il < n_layer; ++il) {
        struct ggml_tensor * inpSA = inpL;

        struct ggml_tensor * cur;

        lctx.use_buf(ctx0, 0);

        // norm
        {
            cur = ggml_rms_norm(ctx0, inpL);

            // cur = attention_norm*cur
            cur = ggml_mul(ctx0,
                        ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
                        cur);
        }

        // self-attention
        {
            // compute Q and K and RoPE them
            struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
            struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);

            // store key and value to memory
            {
                // compute the transposed [N, n_embd] V matrix
                struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));

                struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
                struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
                        (   n_ctx)*ggml_element_size(kv_self.v),
                        (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));

                // important: storing RoPE-ed version of K in the KV cache!
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
            }

            struct ggml_tensor * Q =
                ggml_permute(ctx0,
                        Qcur,
                        0, 2, 1, 3);

            struct ggml_tensor * K =
                ggml_permute(ctx0,
                        ggml_reshape_3d(ctx0,
                            ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
                            n_embd/n_head, n_head, n_past + N),
                        0, 2, 1, 3);

            // K * Q
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);

            // KQ_scaled = KQ / sqrt(n_embd/n_head)
            struct ggml_tensor * KQ_scaled =
                ggml_scale(ctx0,
                        KQ,
                        ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));

            // KQ_masked = mask_past(KQ_scaled)
            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);

            // KQ = soft_max(KQ_masked)
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);

            // split cached V into n_head heads
            struct ggml_tensor * V =
                ggml_view_3d(ctx0, kv_self.v,
                        n_past + N, n_embd/n_head, n_head,
                        n_ctx*ggml_element_size(kv_self.v),
                        n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
                        il*n_ctx*ggml_element_size(kv_self.v)*n_embd);

#if 1
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
#else
            // make V contiguous in memory to speed up the matmul, however we waste time on the copy
            // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
            // is there a better way?
            struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif

            // KQV_merged = KQV.permute(0, 2, 1, 3)
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            // cur = KQV_merged.contiguous().view(n_embd, N)
            cur = ggml_cpy(ctx0,
                    KQV_merged,
                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));

            // projection (no bias)
            cur = ggml_mul_mat(ctx0,
                    model.layers[il].wo,
                    cur);
        }

        lctx.use_buf(ctx0, 1);

        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);

        // feed-forward network
        {
            // norm
            {
                cur = ggml_rms_norm(ctx0, inpFF);

                // cur = ffn_norm*cur
                cur = ggml_mul(ctx0,
                        ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
                        cur);
            }

            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
                    model.layers[il].w3,
                    cur);

            cur = ggml_mul_mat(ctx0,
                    model.layers[il].w1,
                    cur);

            // SILU activation
            cur = ggml_silu(ctx0, cur);

            cur = ggml_mul(ctx0, cur, tmp);

            cur = ggml_mul_mat(ctx0,
                    model.layers[il].w2,
                    cur);
        }

        cur = ggml_add(ctx0, cur, inpFF);

        // input for next layer
        inpL = cur;
    }

    lctx.use_buf(ctx0, 0);

    // used at the end to optionally extract the embeddings
    struct ggml_tensor * embeddings = NULL;

    // norm
    {

        inpL = ggml_rms_norm(ctx0, inpL);

        // inpL = norm*inpL
        inpL = ggml_mul(ctx0,
                    ggml_repeat(ctx0, model.norm, inpL),
                    inpL);

        embeddings = inpL;
    }

    // lm_head
    inpL = ggml_mul_mat(ctx0, model.output, inpL);

    lctx.use_buf(ctx0, -1);

    // logits -> probs
    //inpL = ggml_soft_max(ctx0, inpL);

    // run the computation
    ggml_build_forward_expand(&gf, inpL);
    ggml_graph_compute       (ctx0, &gf);

#ifdef GGML_PERF
    // print timing information per ggml operation (for debugging purposes)
    // requires GGML_PERF to be defined
    ggml_graph_print(&gf);
#endif

    // plot the computation graph in dot format (for debugging purposes)
    //if (n_past%100 == 0) {
    //    ggml_graph_dump_dot(&gf, NULL, "llama.dot");
    //}

    //embd_w.resize(n_vocab*N);
    //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);

    // extract logits
    {
        auto & logits_out = lctx.logits;

        if (lctx.logits_all) {
            logits_out.resize(n_vocab * N);
            memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
        } else {
            // return result for just the last token
            logits_out.resize(n_vocab);
            memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
        }
    }

    // extract embeddings
    if (lctx.embedding.size()) {
        auto & embedding_out = lctx.embedding;

        embedding_out.resize(n_embd);
        memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
    }

    if (mem_per_token == 0) {
        mem_per_token = ggml_used_mem(ctx0)/N;
    }

#if 0
    printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
            ggml_used_mem(ctx0)/1024.0/1024.0,
            lctx.get_buf_max_mem(0)/1024.0/1024.0,
            lctx.get_buf_max_mem(1)/1024.0/1024.0);
#endif

    ggml_free(ctx0);

    // measure the performance only for the single-token evals
    if (N == 1) {
        lctx.t_eval_us += ggml_time_us() - t_start_us;
        lctx.n_eval++;
    }
    else if (N > 1) {
        lctx.t_p_eval_us += ggml_time_us() - t_start_us;
        lctx.n_p_eval += N;
    }

    return true;
}

//
// tokenizer
//

static size_t utf8_len(char src) {
    const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
    uint8_t highbits = static_cast<uint8_t>(src) >> 4;
    return lookup[highbits];
}

struct llama_sp_symbol {
    using index = int;
    index prev;
    index next;
    const char * text;
    size_t n;
};

struct llama_sp_bigram {
    struct comparator {
        bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
        }
    };
    using queue_storage = std::vector<llama_sp_bigram>;
    using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
    llama_sp_symbol::index left;
    llama_sp_symbol::index right;
    float score;
    size_t size;
};

// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
struct llama_tokenizer {
    llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}

    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
        // split string into utf8 chars
        int index = 0;
        size_t offs = 0;
        while (offs < text.size()) {
            llama_sp_symbol sym;
            size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
            sym.text = text.c_str() + offs;
            sym.n = char_len;
            offs += char_len;
            sym.prev = index - 1;
            sym.next = offs == text.size() ? -1 : index + 1;
            index++;
            symbols_.emplace_back(std::move(sym));
        }

        // seed the work queue with all possible 2-character tokens.
        for (size_t i = 1; i < symbols_.size(); ++i) {
            try_add_bigram(i - 1, i);
        }

        // keep substituting the highest frequency pairs for as long as we can.
        while (!work_queue_.empty()) {
            auto bigram = work_queue_.top();
            work_queue_.pop();

            auto & left_sym = symbols_[bigram.left];
            auto & right_sym = symbols_[bigram.right];

            // if one of the symbols already got merged, skip it.
            if (left_sym.n == 0 || right_sym.n == 0 ||
                left_sym.n + right_sym.n != bigram.size) {
                continue;
            }

            // merge the right sym into the left one
            left_sym.n += right_sym.n;
            right_sym.n = 0;

            //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);

            // remove the right sym from the chain
            left_sym.next = right_sym.next;
            if (right_sym.next >= 0) {
                symbols_[right_sym.next].prev = bigram.left;
            }

            // find more substitutions
            try_add_bigram(left_sym.prev, bigram.left);
            try_add_bigram(bigram.left, left_sym.next);
        }

        for (int i = 0; i != -1; i = symbols_[i].next) {
            auto & symbol = symbols_[i];
            auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));

            if (token == vocab_.token_to_id.end()) {
                // output any symbols that did not form tokens as bytes.
                for (int j = 0; j < (int) symbol.n; ++j) {
                    llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
                    output.push_back(token_id);
                }
            } else {
                output.push_back((*token).second);
            }
        }
    }

private:
    void try_add_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }

        const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
        auto token = vocab_.token_to_id.find(text);

        if (token == vocab_.token_to_id.end()) {
            return;
        }

        if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
            return;
        }

        const auto &tok_score = vocab_.id_to_token[(*token).second];

        llama_sp_bigram bigram;
        bigram.left = left;
        bigram.right = right;
        bigram.score = tok_score.score;
        bigram.size = text.size();
        work_queue_.push(bigram);
    }

    const llama_vocab & vocab_;
    std::vector<llama_sp_symbol> symbols_;
    llama_sp_bigram::queue work_queue_;
};

static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
    llama_tokenizer tokenizer(vocab);
    std::vector<llama_vocab::id> output;

    if (text.size() == 0) {
        return output;
    }

    if (bos) {
        output.push_back(1);
    }

    tokenizer.tokenize(text, output);
    return output;
}

//
// sampling
//

static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
    // find the top k tokens
    std::partial_sort(
            logits_id.begin(),
            logits_id.begin() + top_k, logits_id.end(),
            [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
        return a.first > b.first;
    });

    logits_id.resize(top_k);
}

static llama_vocab::id llama_sample_top_p_top_k(
        llama_context & lctx,
        const std::vector<llama_vocab::id> & last_n_tokens,
        int top_k,
        float top_p,
        float temp,
        float repeat_penalty) {
    auto & rng = lctx.rng;

    const int n_logits = lctx.model.hparams.n_vocab;

    const auto & logits = lctx.logits;
    const auto * plogits = logits.data() + logits.size() - n_logits;

    if (temp <= 0) {
        // select the token with the highest logit directly
        float max_logit = plogits[0];
        llama_vocab::id max_id = 0;

        for (int i = 1; i < n_logits; ++i) {
            if (plogits[i] > max_logit) {
                max_logit = plogits[i];
                max_id = i;
            }
        }
        return max_id;
    }

    std::vector<std::pair<float, llama_vocab::id>> logits_id;
    logits_id.reserve(n_logits);

    {
        const float scale = 1.0f/temp;
        for (int i = 0; i < n_logits; ++i) {
            // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
            // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
            if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
                // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
                if (plogits[i] < 0.0f) {
                    logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
                } else {
                    logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
                }
            } else {
                logits_id.push_back(std::make_pair(plogits[i]*scale, i));
            }
        }
    }

    sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);

    // compute probs for the top k tokens
    std::vector<float> probs;
    probs.reserve(logits_id.size());

    float maxl = logits_id[0].first;
    double sum = 0.0;
    for (const auto & kv : logits_id) {
        const float p = expf(kv.first - maxl);
        probs.push_back(p);
        sum += p;
    }

    // normalize the probs
    for (auto & p : probs) {
        p /= sum;
    }

    if (top_p < 1.0) {
        double cumsum = 0.0;
        for (int i = 0; i < (int) probs.size(); i++) {
            cumsum += probs[i];
            if (cumsum >= top_p) {
                probs.resize(i + 1);
                logits_id.resize(i + 1);
                break;
            }
        }
    }

    //printf("\n");
    //for (int i = 0; i < (int) 10; i++) {
    //    printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
    //}
    //printf("\n\n");
    //exit(0);

    std::discrete_distribution<> dist(probs.begin(), probs.end());
    int idx = dist(rng);

    return logits_id[idx].second;
}

//
// quantization
//

static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
    ggml_type quantized_type;
    switch (ftype) {
        case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
        case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
        case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break;
        case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break;
        default: throw format("invalid output file type %d\n", ftype);
    };

    if (nthread <= 0) {
        nthread = std::thread::hardware_concurrency();
    }

    std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
                                                                            /*vocab_only*/ false));
    llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);

    size_t total_size_org = 0;
    size_t total_size_new = 0;
    std::vector<int64_t> hist_all(1 << 4, 0);

    std::vector<std::thread> workers;
    std::mutex mutex;

    size_t idx = 0;
    for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
        llama_buffer read_data;
        read_data.resize(tensor.size);
        tensor.data = read_data.addr;
        model_loader->load_data_for(tensor);

        printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
               ++idx, model_loader->tensors_map.tensors.size(),
               tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
               ggml_type_name(tensor.type));

        // This used to be a regex, but <regex> has an extreme cost to compile times.
        bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?

        // quantize only 2D tensors
        quantize &= (tensor.ne.size() == 2);

        // uncomment this to keep the output layer in FP16
        //if (tensor.name == "output.weight") {
        //    quantize = false;
        //}

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;
        llama_buffer work;

        if (!quantize) {
            new_type = tensor.type;
            new_data = tensor.data;
            new_size = tensor.size;
            printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
        } else {
            new_type = quantized_type;
            float * f32_data;
            size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
            llama_buffer f32_conv_buf;
            if (tensor.type == GGML_TYPE_F32) {
                f32_data = (float *) tensor.data;
            } else if (tensor.type == GGML_TYPE_F16) {
                f32_conv_buf.resize(nelements * sizeof(float));
                f32_data = (float *) f32_conv_buf.addr;
                auto f16_data = (const ggml_fp16_t *) tensor.data;
                for (size_t i = 0; i < nelements; i++) {
                    f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
                }
            } else {
                throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type));
            }

            printf("quantizing .. ");
            fflush(stdout);

            work.resize(nelements * 4); // upper bound on size
            new_data = work.addr;
            std::vector<int64_t> hist_cur(1 << 4, 0);

            int chunk_size = 32 * 512;
            const int nchunk = (nelements + chunk_size - 1)/chunk_size;
            const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
            if (nthread_use < 2) {
                new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
            } else {
                size_t counter = 0;
                new_size = 0;
                auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
                    std::vector<int64_t> local_hist;
                    size_t local_size = 0;
                    while (true) {
                        std::unique_lock<std::mutex> lock(mutex);
                        size_t first = counter; counter += chunk_size;
                        if (first >= nelements) {
                            if (!local_hist.empty()) {
                                for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
                                new_size += local_size;
                            }
                            break;
                        }
                        lock.unlock();
                        size_t last = std::min(nelements, first + chunk_size);
                        if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
                        local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
                    }
                };
                if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
                for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
                compute();
                for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
            }

            printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
            for (size_t i = 0; i < hist_cur.size(); i++) {
                hist_all[i] += hist_cur[i];
            }

            for (size_t i = 0; i < hist_cur.size(); i++) {
                printf("%5.3f ", hist_cur[i] / float(nelements));
            }
            printf("\n");
        }
        total_size_org += tensor.size;
        total_size_new += new_size;
        file_saver.write_tensor(tensor, new_type, new_data, new_size);
    }

    printf("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
    printf("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);

    {
        int64_t sum_all = 0;
        for (size_t i = 0; i < hist_all.size(); i++) {
            sum_all += hist_all[i];
        }

        printf("%s: hist: ", __func__);
        for (size_t i = 0; i < hist_all.size(); i++) {
            printf("%5.3f ", hist_all[i] / float(sum_all));
        }
        printf("\n");
    }
}

//
// interface implementation
//

struct llama_context * llama_init_from_file(
                             const char * path_model,
            struct llama_context_params   params) {
    ggml_time_init();

    llama_context * ctx = new llama_context;

    if (params.seed <= 0) {
        params.seed = time(NULL);
    }

    unsigned cur_percentage = 0;
    if (params.progress_callback == NULL) {
        params.progress_callback_user_data = &cur_percentage;
        params.progress_callback = [](float progress, void * ctx) {
            unsigned * cur_percentage_p = (unsigned *) ctx;
            unsigned percentage = (unsigned) (100 * progress);
            while (percentage > *cur_percentage_p) {
                ++*cur_percentage_p;
                fprintf(stderr, ".");
                fflush(stderr);
                if (percentage >= 100) {
                    fprintf(stderr, "\n");
                }
            }
        };
    }

    ctx->rng = std::mt19937(params.seed);
    ctx->logits_all = params.logits_all;

    ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;

    if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
                          params.use_mmap, params.use_mlock, params.vocab_only,
                          params.progress_callback, params.progress_callback_user_data)) {
        fprintf(stderr, "%s: failed to load model\n", __func__);
        llama_free(ctx);
        return nullptr;
    }

    // reserve memory for context buffers
    if (!params.vocab_only) {
        if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
            fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
            llama_free(ctx);
            return nullptr;
        }

        {
            const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
            fprintf(stderr, "%s: kv self size  = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
        }

        const auto & hparams = ctx->model.hparams;

        // resized during inference
        if (params.logits_all) {
            ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
        } else {
            ctx->logits.reserve(hparams.n_vocab);
        }

        if (params.embedding){
            ctx->embedding.resize(hparams.n_embd);
        }

        ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));

        ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
        ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
    }

    return ctx;
}

void llama_free(struct llama_context * ctx) {
    delete ctx;
}

int llama_model_quantize(
        const char * fname_inp,
        const char * fname_out,
  enum llama_ftype   ftype,
        int          nthread) {
    try {
        llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
        return 0;
    } catch (const std::string & err) {
        fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
        return 1;
    }
}

int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
    fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);

    auto & model = ctx->model;

    const int64_t t_start_lora_us = ggml_time_us();

    auto fin = std::ifstream(path_lora, std::ios::binary);
    if (!fin) {
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
        return 1;
    }

    // verify magic and version
    {
        uint32_t magic;
        fin.read((char *) &magic, sizeof(magic));
        if (magic != 'ggla') {
            fprintf(stderr, "%s: bad file magic\n", __func__);
            return 1;
        }
        uint32_t format_version;
        fin.read((char *) &format_version, sizeof(format_version));

        if (format_version != 1) {
            fprintf(stderr, "%s: unsupported file version\n", __func__ );
            return 1;
        }
    }

    int32_t lora_r;
    int32_t lora_alpha;
    fin.read((char *) &lora_r, sizeof(lora_r));
    fin.read((char *) &lora_alpha, sizeof(lora_alpha));
    float scaling = (float)lora_alpha / (float)lora_r;

    fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);


    // create a temporary ggml context to store the lora tensors
    // todo: calculate size from biggest possible tensor
    std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
    struct ggml_init_params params;
    params.mem_size   = lora_buf.size();
    params.mem_buffer = lora_buf.data();
    params.no_alloc   = false;

    ggml_context * lora_ctx = ggml_init(params);
    std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;

    // create a name -> tensor map of the model to accelerate lookups
    std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
    for (auto & kv: model.tensors_by_name) {
        model_tensors.insert(kv);
    }


    // load base model
    std::unique_ptr<llama_model_loader> model_loader;
    ggml_context * base_ctx = NULL;
    llama_buffer base_buf;
    if (path_base_model) {
        fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
        model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));

        size_t ctx_size, mmapped_size;
        model_loader->calc_sizes(&ctx_size, &mmapped_size);
        base_buf.resize(ctx_size);

        ggml_init_params base_params;
        base_params.mem_size   = base_buf.size;
        base_params.mem_buffer = base_buf.addr;
        base_params.no_alloc   = model_loader->use_mmap;

        base_ctx = ggml_init(base_params);

        model_loader->ggml_ctx = base_ctx;

        // maybe this should in llama_model_loader
        if (model_loader->use_mmap) {
            model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
        }
    }

    // read tensors and apply
    bool warned = false;
    int n_tensors = 0;
    while (true) {
        int32_t n_dims;
        int32_t length;
        int32_t ftype;

        fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
        fin.read(reinterpret_cast<char *>(&length), sizeof(length));
        fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
        if (fin.eof()) {
            break;
        }

        int32_t ne[2] = { 1, 1 };
        for (int i = 0; i < n_dims; ++i) {
            fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
        }

        std::string name(length, 0);
        fin.read(&name[0], length);

        // check for lora suffix and get the type of tensor
        const std::string lora_suffix = ".lora";
        size_t pos = name.rfind(lora_suffix);
        if (pos == std::string::npos) {
            fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
            return 1;
        }

        std::string lora_type = name.substr(pos + lora_suffix.length());
        std::string base_name = name;
        base_name.erase(pos);
        // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());

        if (model_tensors.find(base_name.data()) == model_tensors.end()) {
            fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
            return 1;
        }

        // create ggml tensor
        ggml_type wtype;
        switch (ftype) {
            case 0: wtype = GGML_TYPE_F32;  break;
            case 1: wtype = GGML_TYPE_F16;  break;
            default:
                    {
                        fprintf(stderr, "%s: invalid tensor data type '%d'\n",
                                __func__, ftype);
                        return false;
                    }
        }
        ggml_tensor* lora_tensor;
        if (n_dims == 2) {
            lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
        }
        else {
            fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
            return 1;
        }

        // load tensor data
        size_t offset = fin.tellg();
        size_t tensor_data_size = ggml_nbytes(lora_tensor);
        offset = (offset + 31) & -32;
        fin.seekg(offset);
        fin.read((char*)lora_tensor->data, tensor_data_size);

        lora_tensors[name] = lora_tensor;

        // check if we have both A and B tensors and apply
        if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
            lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {

            ggml_tensor * dest_t = model_tensors[base_name];
            ggml_tensor * base_t;
            if (model_loader) {
                // load from base model
                if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
                    fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
                    return 1;
                }
                size_t idx = model_loader->tensors_map.name_to_idx[base_name];
                llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
                base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
                lt.data = (uint8_t *) lt.ggml_tensor->data;
                model_loader->load_data_for(lt);
                lt.ggml_tensor->data = lt.data;
            }
            else {
                base_t = dest_t;
            }

            if (ggml_is_quantized(base_t->type)) {
                if (!warned) {
                    fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
                                    "use a f16 or f32 base model with --lora-base\n", __func__);
                    warned = true;
                }
            }

            ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
            ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];

            if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
                fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
                               " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
                return 1;
            }

            // w = w + BA*s
            ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);

            if (scaling != 1.0f) {
                ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
                BA = ggml_scale(lora_ctx, BA, scale_tensor);
            }

            ggml_tensor * r;
            if (base_t == dest_t) {
                r = ggml_add_inplace(lora_ctx, dest_t, BA);
            }
            else {
                r = ggml_add(lora_ctx, base_t, BA);
                r = ggml_cpy(lora_ctx, r, dest_t);
            }

            struct ggml_cgraph gf = ggml_build_forward(r);
            gf.n_threads = n_threads;
            ggml_graph_compute(lora_ctx, &gf);

            // we won't need these tensors again, reset the context to save memory
            ggml_free(lora_ctx);
            lora_ctx = ggml_init(params);
            lora_tensors.clear();

            n_tensors++;
            if (n_tensors % 4 == 0)
                fprintf(stderr, ".");
        }
    }

    // TODO: this should be in a destructor, it will leak on failure
    ggml_free(lora_ctx);
    if (base_ctx) {
        ggml_free(base_ctx);
    }

    const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
    fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);

    return 0;
}

int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
    try {
        return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
    } catch (const std::string & err) {
        fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
        return 1;
    }
}

// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
    return ctx->model.kv_self.buf.addr;
}

// Returns the size of the KV cache
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
    return ctx->model.kv_self.buf.size;
}

int llama_get_kv_cache_token_count(struct llama_context * ctx) {
    return ctx->model.kv_self.n;
}

// Sets the KV cache containing the current context for the model
void llama_set_kv_cache(
        struct llama_context * ctx,
               const uint8_t * kv_cache,
                      size_t   n_size,
                         int   n_token_count) {
    // Make sure we have the same kv cache setup
    LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
    void * k_data = ctx->model.kv_self.k->data; // remember data pointers
    void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
    memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
    ctx->model.kv_self.k->data = k_data; // restore correct data pointers
    ctx->model.kv_self.v->data = v_data;
    ctx->model.kv_self.n = n_token_count;
}

int llama_eval(
        struct llama_context * ctx,
           const llama_token * tokens,
                         int   n_tokens,
                         int   n_past,
                         int   n_threads) {
    if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
        fprintf(stderr, "%s: failed to eval\n", __func__);
        return 1;
    }
    // get a more accurate load time, upon first eval
    if (!ctx->has_evaluated_once) {
        ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
        ctx->has_evaluated_once = true;
    }
    return 0;
}

int llama_tokenize(
        struct llama_context * ctx,
                  const char * text,
                 llama_token * tokens,
                         int   n_max_tokens,
                        bool   add_bos) {
    auto res = llama_tokenize(ctx->vocab, text, add_bos);

    if (n_max_tokens < (int) res.size()) {
        fprintf(stderr, "%s: too many tokens\n", __func__);
        return -((int) res.size());
    }

    for (size_t i = 0; i < res.size(); i++) {
        tokens[i] = res[i];
    }

    return res.size();
}

int llama_n_vocab(struct llama_context * ctx) {
    return ctx->vocab.id_to_token.size();
}

int llama_n_ctx(struct llama_context * ctx) {
    return ctx->model.hparams.n_ctx;
}

int llama_n_embd(struct llama_context * ctx) {
    return ctx->model.hparams.n_embd;
}

float * llama_get_logits(struct llama_context * ctx) {
    return ctx->logits.data();
}

float * llama_get_embeddings(struct llama_context * ctx) {
    return ctx->embedding.data();
}

const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
    if (token >= llama_n_vocab(ctx)) {
        return nullptr;
    }

    return ctx->vocab.id_to_token[token].tok.c_str();
}

llama_token llama_token_bos() {
    return 1;
}

llama_token llama_token_eos() {
    return 2;
}

llama_token llama_sample_top_p_top_k(
          llama_context * ctx,
      const llama_token * last_n_tokens_data,
                    int   last_n_tokens_size,
                    int   top_k,
                  float   top_p,
                  float   temp,
                  float   repeat_penalty) {
    const int64_t t_start_sample_us = ggml_time_us();

    llama_token result = 0;

    // TODO: avoid this ...
    const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);

    result = llama_sample_top_p_top_k(
            *ctx,
            last_n_tokens,
            top_k,
            top_p,
            temp,
            repeat_penalty);

    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    ctx->n_sample++;

    return result;
}


void llama_print_timings(struct llama_context * ctx) {
    const int64_t t_end_us = ggml_time_us();

    const int32_t n_sample = std::max(1, ctx->n_sample);
    const int32_t n_eval   = std::max(1, ctx->n_eval);
    const int32_t n_p_eval = std::max(1, ctx->n_p_eval);

    fprintf(stderr, "\n");
    fprintf(stderr, "%s:        load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
    fprintf(stderr, "%s:      sample time = %8.2f ms / %5d runs   (%8.2f ms per run)\n",   __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
    fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
    fprintf(stderr, "%s:        eval time = %8.2f ms / %5d runs   (%8.2f ms per run)\n",   __func__, 1e-3 * ctx->t_eval_us,   n_eval,   1e-3 * ctx->t_eval_us   / n_eval);
    fprintf(stderr, "%s:       total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
}

void llama_reset_timings(struct llama_context * ctx) {
    ctx->t_start_us = ggml_time_us();
    ctx->t_sample_us = ctx->n_sample = 0;
    ctx->t_eval_us   = ctx->n_eval   = 0;
    ctx->t_p_eval_us = ctx->n_p_eval = 0;
}

const char * llama_print_system_info(void) {
    static std::string s;

    s  = "";
    s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
    s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
    s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
    s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
    s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
    s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
    s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
    s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
    s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
    s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
    s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
    s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
    s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
    s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";

    return s.c_str();
}

// For internal test use
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
    return ctx->model.tensors_by_name;
}

// Returns the size of the state
size_t llama_get_state_size(struct llama_context * ctx) {
    // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
    // for reference, std::mt19937(1337) serializes to 6701 bytes.
    const size_t s_rng_size = sizeof(size_t);
    const size_t s_rng = 64*1024;
    const size_t s_logits_capacity = sizeof(size_t);
    const size_t s_logits_size = sizeof(size_t);
    const size_t s_logits = ctx->logits.capacity() * sizeof(float);
    const size_t s_embedding_size = sizeof(size_t);
    const size_t s_embedding = ctx->embedding.size() * sizeof(float);
    const size_t s_kv_size = sizeof(size_t);
    const size_t s_kv_ntok = sizeof(int);
    const size_t s_kv = llama_get_kv_cache_size(ctx);
    const size_t s_total = (
        + s_rng_size
        + s_rng
        + s_logits_capacity
        + s_logits_size
        + s_logits
        + s_embedding_size
        + s_embedding
        + s_kv_size
        + s_kv_ntok
        + s_kv
    );
    return s_total;
}

// Copies the state to the specified destination address
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) {
    std::stringstream rng_ss;
    rng_ss << ctx->rng;
    const size_t rng_size = rng_ss.str().size();
    char rng_buf[64*1024];
    memset(&rng_buf[0], 0, 64*1024);
    memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
    const size_t logits_capacity = ctx->logits.capacity();
    const size_t logits_size = ctx->logits.size();
    const size_t embedding_size = ctx->embedding.size();
    const size_t kv_size = llama_get_kv_cache_size(ctx);
    const int kv_ntok = llama_get_kv_cache_token_count(ctx);

    uint8_t * out = dest;
    memcpy(out, &rng_size, sizeof(size_t)); out += sizeof(size_t);
    memcpy(out, &rng_buf[0], 64*1024); out += 64*1024;
    memcpy(out, &logits_capacity, sizeof(size_t)); out += sizeof(size_t);
    memcpy(out, &logits_size, sizeof(size_t)); out += sizeof(size_t);
    if (logits_size) {
        memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
    }
    out += logits_capacity * sizeof(float);
    memcpy(out, &embedding_size, sizeof(size_t)); out += sizeof(size_t);
    if (embedding_size) {
        memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); out += embedding_size * sizeof(float);
    }
    memcpy(out, &kv_size, sizeof(size_t)); out += sizeof(size_t);
    memcpy(out, &kv_ntok, sizeof(int)); out += sizeof(int);
    if (kv_size) {
        memcpy(out, llama_get_kv_cache(ctx), kv_size); out += kv_size;
    }
    const size_t written = out - dest;
    const size_t expected = llama_get_state_size(ctx);
    LLAMA_ASSERT(written == expected);
    return written;
}

// Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
    size_t rng_size;
    char rng_buf[64*1024];
    std::stringstream rng_ss;

    const uint8_t * in = src;
    memcpy(&rng_size, in, sizeof(size_t)); in += sizeof(size_t);
    memcpy(&rng_buf[0], in, 64*1024); in += 64*1024;
    rng_ss.str(std::string(&rng_buf[0], rng_size));
    rng_ss >> ctx->rng;
    LLAMA_ASSERT(rng_ss.fail() == false);

    size_t logits_capacity;
    size_t logits_size;
    size_t embedding_size;
    size_t kv_size;
    int kv_ntok;

    memcpy(&logits_capacity, in, sizeof(size_t)); in += sizeof(size_t);
    memcpy(&logits_size, in, sizeof(size_t)); in += sizeof(size_t);
    LLAMA_ASSERT(ctx->logits.capacity() == logits_capacity);
    if (logits_size) {
        ctx->logits.resize(logits_size);
        memcpy(ctx->logits.data(), in, logits_size * sizeof(float));
    }
    in += logits_capacity * sizeof(float);
    memcpy(&embedding_size, in, sizeof(size_t)); in += sizeof(size_t);
    LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
    if (embedding_size) {
        memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float));
        in += embedding_size * sizeof(float);
    }
    memcpy(&kv_size, in, sizeof(size_t)); in += sizeof(size_t);
    memcpy(&kv_ntok, in, sizeof(int)); in += sizeof(int);
    if (kv_size) {
        LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size);
        void * k_data = ctx->model.kv_self.k->data; // remember data pointers
        void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
        memcpy(ctx->model.kv_self.buf.addr, in, kv_size);
        ctx->model.kv_self.k->data = k_data; // restore correct data pointers
        ctx->model.kv_self.v->data = v_data;
        in += kv_size;
    }
    ctx->model.kv_self.n = kv_ntok;
    const size_t nread = in - src;
    const size_t expected = llama_get_state_size(ctx);
    LLAMA_ASSERT(nread == expected);
    return nread;
}