aboutsummaryrefslogtreecommitdiff
path: root/main.cpp
blob: 9f46d569874d87a98da50ac50d511f21f49f1b45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
#include "ggml.h"

#include "utils.h"

#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#include <signal.h>
#endif

#if defined (_WIN32)
#pragma comment(lib,"kernel32.lib")
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
#endif

#define ANSI_COLOR_RED     "\x1b[31m"
#define ANSI_COLOR_GREEN   "\x1b[32m"
#define ANSI_COLOR_YELLOW  "\x1b[33m"
#define ANSI_COLOR_BLUE    "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN    "\x1b[36m"
#define ANSI_COLOR_RESET   "\x1b[0m"
#define ANSI_BOLD          "\x1b[1m"

static const int EOS_TOKEN_ID = 2;

// determine number of model parts based on the dimension
static const std::map<int, int> LLAMA_N_PARTS = {
    { 4096, 1 },
    { 5120, 2 },
    { 6656, 4 },
    { 8192, 8 },
};

// default hparams (LLaMA 7B)
struct llama_hparams {
    int32_t n_vocab = 32000;
    int32_t n_ctx   = 512;   // this is provided as user input?
    int32_t n_embd  = 4096;
    int32_t n_mult  = 256;
    int32_t n_head  = 32;
    int32_t n_layer = 32;
    int32_t n_rot   = 64;
    int32_t f16     = 1;
};

struct llama_layer {
    // normalization
    struct ggml_tensor * attention_norm;

    // attention
    struct ggml_tensor * wq;
    struct ggml_tensor * wk;
    struct ggml_tensor * wv;
    struct ggml_tensor * wo;

    // normalization
    struct ggml_tensor * ffn_norm;

    // ff
    struct ggml_tensor * w1;
    struct ggml_tensor * w2;
    struct ggml_tensor * w3;
};

struct llama_model {
    llama_hparams hparams;

    struct ggml_tensor * tok_embeddings;

    struct ggml_tensor * norm;
    struct ggml_tensor * output;

    std::vector<llama_layer> layers;

    // key + value memory
    struct ggml_tensor * memory_k;
    struct ggml_tensor * memory_v;

    //
    struct ggml_context * ctx;
    std::map<std::string, struct ggml_tensor *> tensors;
};

// load the model's weights from a file

bool llama_model_load(const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_parts, ggml_type memory_type = GGML_TYPE_F32) {
    fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());

    std::vector<char> f_buf(1024*1024);

    auto fin = std::ifstream(fname, std::ios::binary);
    fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
    if (!fin) {
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
        return false;
    }

    // verify magic
    {
        uint32_t magic;
        fin.read((char *) &magic, sizeof(magic));
        if (magic == FILE_MAGIC_UNVERSIONED) {
            fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
                    __func__, fname.c_str());
            return false;
        }
        if (magic != FILE_MAGIC) {
            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
            return false;
        }

        uint32_t format_version;
        fin.read((char *) &format_version, sizeof(format_version));

        if (format_version != FILE_VERSION) {
            fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
                    __func__, fname.c_str(), format_version, FILE_VERSION);
            return false;
        }
    }

    int n_ff = 0;

    // load hparams
    {
        auto & hparams = model.hparams;

        fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
        //fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
        fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
        fin.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
        fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
        fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
        fin.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
        fin.read((char *) &hparams.f16,     sizeof(hparams.f16));

        hparams.n_ctx = n_ctx;

        n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;

        if (n_parts < 1) {
            n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
        }

        fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
        fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
        fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd);
        fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult);
        fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head);
        fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
        fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot);
        fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16);
        fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff);
        fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
    }

    // load vocab
    {
        std::string word;
        std::vector<char> tmp(64);

        for (int i = 0; i < model.hparams.n_vocab; i++) {
            uint32_t len;
            fin.read((char *) &len, sizeof(len));

            word.resize(len);
            if (len > 0) {
                tmp.resize(len);
                fin.read(tmp.data(), len);
                word.assign(tmp.data(), len);
            } else {
                word.clear();
            }

            float score;
            fin.read((char *) &score, sizeof(score));

            vocab.token_to_id[word] = i;
            vocab.id_to_token[i] = word;
            vocab.score[i] = score;
        }
    }

    // for the big tensors, we have the option to store the data in 16-bit floats or quantized
    // in order to save memory and also to speed up the computation
    ggml_type wtype = GGML_TYPE_COUNT;
    switch (model.hparams.f16) {
        case 0: wtype = GGML_TYPE_F32;  break;
        case 1: wtype = GGML_TYPE_F16;  break;
        case 2: wtype = GGML_TYPE_Q4_0; break;
        case 3: wtype = GGML_TYPE_Q4_1; break;
        default:
                {
                    fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
                            __func__, fname.c_str(), model.hparams.f16);
                    return false;
                }
    }

    auto & ctx = model.ctx;

    size_t ctx_size = 0;

    {
        const auto & hparams = model.hparams;

        const int n_embd  = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx   = hparams.n_ctx;
        const int n_vocab = hparams.n_vocab;

        ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings

        ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm

        ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output

        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm

        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo

        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm

        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3

        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v

        ctx_size += (5 + 10*n_layer)*256; // object overhead

        fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
    }

    // create the ggml context
    {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx_size,
            /*.mem_buffer =*/ NULL,
        };

        model.ctx = ggml_init(params);
        if (!model.ctx) {
            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
            return false;
        }
    }

    // prepare memory for the weights
    {
        const auto & hparams = model.hparams;

        const int n_embd  = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_vocab = hparams.n_vocab;

        model.layers.resize(n_layer);

        model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);

        model.norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
        model.output = ggml_new_tensor_2d(ctx, wtype,         n_embd, n_vocab);

        // map by name
        model.tensors["tok_embeddings.weight"] = model.tok_embeddings;

        model.tensors["norm.weight"]   = model.norm;
        model.tensors["output.weight"] = model.output;

        for (int i = 0; i < n_layer; ++i) {
            auto & layer = model.layers[i];

            layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

            layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
            layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
            layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
            layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);

            layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);

            layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
            layer.w2 = ggml_new_tensor_2d(ctx, wtype,   n_ff, n_embd);
            layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);

            // map by name
            model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;

            model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
            model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
            model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
            model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;

            model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;

            model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
            model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
            model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
        }
    }

    // key + value memory
    {
        const auto & hparams = model.hparams;

        const int n_embd  = hparams.n_embd;
        const int n_layer = hparams.n_layer;
        const int n_ctx   = hparams.n_ctx;

        const int n_mem      = n_layer*n_ctx;
        const int n_elements = n_embd*n_mem;

        model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
        model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);

        const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);

        fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
    }

    const size_t file_offset = fin.tellg();

    fin.close();

    std::vector<uint8_t> tmp;

    for (int i = 0; i < n_parts; ++i) {
        const int part_id = i;
        //const int part_id = n_parts - i - 1;

        std::string fname_part = fname;
        if (i > 0) {
            fname_part += "." + std::to_string(i);
        }

        fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());

        fin = std::ifstream(fname_part, std::ios::binary);
        fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
        fin.seekg(file_offset);

        // load weights
        {
            int n_tensors = 0;
            size_t total_size = 0;

            fprintf(stderr, "%s: ", __func__);

            while (true) {
                int32_t n_dims;
                int32_t length;
                int32_t ftype;

                fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
                fin.read(reinterpret_cast<char *>(&length), sizeof(length));
                fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));

                if (fin.eof()) {
                    break;
                }

                int32_t nelements = 1;
                int32_t ne[2] = { 1, 1 };
                for (int i = 0; i < n_dims; ++i) {
                    fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
                    nelements *= ne[i];
                }

                std::string name(length, 0);
                fin.read(&name[0], length);

                if (model.tensors.find(name.data()) == model.tensors.end()) {
                    fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
                    return false;
                }

                // split_type = 0: split by columns
                // split_type = 1: split by rows
                int split_type = 0;

                // split_type = 0:
                // regex:
                //   - tok_embeddings.*
                //   - layers.*.attention.wo.weight
                //   - layers.*.feed_forward.w2.weight

                // split_type = 1:
                // regex:
                //   - output.*
                //   - layers.*.attention.wq.weight
                //   - layers.*.attention.wk.weight
                //   - layers.*.attention.wv.weight
                //   - layers.*.feed_forward.w1.weight
                //   - layers.*.feed_forward.w3.weight
                if (name.find("tok_embeddings") != std::string::npos) {
                    split_type = 0;
                } else if (name.find("layers") != std::string::npos) {
                    if (name.find("attention.wo.weight") != std::string::npos) {
                        split_type = 0;
                    } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
                        split_type = 0;
                    } else {
                        split_type = 1;
                    }
                } else if (name.find("output") != std::string::npos) {
                    split_type = 1;
                }

                auto tensor = model.tensors[name.data()];

                if (n_dims == 1) {
                    if (ggml_nelements(tensor) != nelements) {
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
                        return false;
                    }
                } else {
                    if (ggml_nelements(tensor)/n_parts != nelements) {
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
                        return false;
                    }
                }

                if (n_dims == 1) {
                    if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
                        fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
                                __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
                        return false;
                    }
                } else {
                    if (split_type == 0) {
                        if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
                                    __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
                            return false;
                        }
                    } else {
                        if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
                                    __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
                            return false;
                        }
                    }
                }

                if (0) {
                    static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
                    fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
                }

                size_t bpe = 0;

                switch (ftype) {
                    case 0: bpe = ggml_type_size(GGML_TYPE_F32);  break;
                    case 1: bpe = ggml_type_size(GGML_TYPE_F16);  break;
                    case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
                    case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
                    default:
                            {
                                fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
                                return false;
                            }
                };

                if (n_dims == 1 || n_parts == 1) {
                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
                                __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
                        return false;
                    }

                    if (part_id == 0) {
                        fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
                    } else {
                        fin.seekg(ggml_nbytes(tensor), std::ios::cur);
                    }

                    total_size += ggml_nbytes(tensor);
                } else {
                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
                                __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
                        return false;
                    }

                    if (split_type == 0) {
                        const int np0 = ne[0];

                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
                        assert(row_size == tensor->nb[1]);

                        for (int i1 = 0; i1 < ne[1]; ++i1) {
                            const size_t offset_row = i1*row_size;
                            const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
                            fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
                        }
                    } else {
                        const int np1 = ne[1];

                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);

                        for (int i1 = 0; i1 < ne[1]; ++i1) {
                            const size_t offset_row = (i1 + part_id*np1)*row_size;
                            fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
                        }
                    }

                    total_size += ggml_nbytes(tensor)/n_parts;
                }

                //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
                if (++n_tensors % 8 == 0) {
                    fprintf(stderr, ".");
                    fflush(stderr);
                }
            }

            fprintf(stderr, " done\n");

            fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
        }

        fin.close();
    }

    return true;
}

// evaluate the transformer
//
//   - model:     the model
//   - n_threads: number of threads to use
//   - n_past:    the context size so far
//   - embd_inp:  the embeddings of the tokens in the context
//   - embd_w:    the predicted logits for the next token
//
// The GPT-J model requires about 16MB of memory per input token.
//
bool llama_eval(
        const llama_model & model,
        const int n_threads,
        const int n_past,
        const std::vector<llama_vocab::id> & embd_inp,
              std::vector<float>           & embd_w,
              size_t                       & mem_per_token,
              bool return_all_logits = false) {
    const int N = embd_inp.size();

    const auto & hparams = model.hparams;

    const int n_embd  = hparams.n_embd;
    const int n_layer = hparams.n_layer;
    const int n_ctx   = hparams.n_ctx;
    const int n_head  = hparams.n_head;
    const int n_vocab = hparams.n_vocab;
    const int n_rot   = hparams.n_embd/hparams.n_head;

    // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
    // static size_t buf_size = hparams.n_ctx*1024*1024;
    static size_t buf_size = 512u*1024*1024;
    static void * buf = malloc(buf_size);

    if (mem_per_token > 0 && mem_per_token*N > buf_size) {
        const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
        //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);

        // reallocate
        buf_size = buf_size_new;
        buf = realloc(buf, buf_size);
        if (buf == nullptr) {
            fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
            return false;
        }
    }

    struct ggml_init_params params = {
        /*.mem_size   =*/ buf_size,
        /*.mem_buffer =*/ buf,
    };

    struct ggml_context * ctx0 = ggml_init(params);
    ggml_cgraph gf = {};
    gf.n_threads = n_threads;

    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
    memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));

    struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);

    for (int il = 0; il < n_layer; ++il) {
        struct ggml_tensor * inpSA = inpL;

        struct ggml_tensor * cur;

        // norm
        {
            cur = ggml_rms_norm(ctx0, inpL);

            // cur = attention_norm*cur
            cur = ggml_mul(ctx0,
                        ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
                        cur);
        }

        // self-attention
        {
            struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
            struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
            struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);

            // store key and value to memory
            if (N >= 1) {
                struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
                struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));

                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
            }

            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
            struct ggml_tensor * Q =
                ggml_permute(ctx0,
                        ggml_rope(ctx0,
                            ggml_cpy(ctx0,
                                Qcur,
                                ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
                            n_past, n_rot, 0),
                        0, 2, 1, 3);

            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
            struct ggml_tensor * K =
                ggml_permute(ctx0,
                        ggml_rope(ctx0,
                            ggml_reshape_3d(ctx0,
                                ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
                                n_embd/n_head, n_head, n_past + N),
                            n_past, n_rot, 1),
                        0, 2, 1, 3);

            // K * Q
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);

            // KQ_scaled = KQ / sqrt(n_embd/n_head)
            struct ggml_tensor * KQ_scaled =
                ggml_scale(ctx0,
                        KQ,
                        ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
                        );

            // KQ_masked = mask_past(KQ_scaled)
            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);

            // KQ = soft_max(KQ_masked)
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);

            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
            struct ggml_tensor * V_trans =
                ggml_permute(ctx0,
                        ggml_reshape_3d(ctx0,
                            ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
                            n_embd/n_head, n_head, n_past + N),
                        1, 2, 0, 3);

            // KQV = transpose(V) * KQ_soft_max
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);

            // KQV_merged = KQV.permute(0, 2, 1, 3)
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);

            // cur = KQV_merged.contiguous().view(n_embd, N)
            cur = ggml_cpy(ctx0,
                    KQV_merged,
                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));

            // projection (no bias)
            cur = ggml_mul_mat(ctx0,
                    model.layers[il].wo,
                    cur);
        }

        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);

        // feed-forward network
        {
            // norm
            {
                cur = ggml_rms_norm(ctx0, inpFF);

                // cur = ffn_norm*cur
                cur = ggml_mul(ctx0,
                        ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
                        cur);
            }

            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
                    model.layers[il].w3,
                    cur);


            cur = ggml_mul_mat(ctx0,
                    model.layers[il].w1,
                    cur);

            // SILU activation
            cur = ggml_silu(ctx0, cur);

            cur = ggml_mul(ctx0, cur, tmp);

            cur = ggml_mul_mat(ctx0,
                    model.layers[il].w2,
                    cur);
        }

        cur  = ggml_add(ctx0, cur, inpFF);

        // input for next layer
        inpL = cur;
    }

    // norm
    {
        inpL = ggml_rms_norm(ctx0, inpL);

        // inpL = norm*inpL
        inpL = ggml_mul(ctx0,
                    ggml_repeat(ctx0, model.norm, inpL),
                    inpL);
    }

    // lm_head
    {
        inpL = ggml_mul_mat(ctx0, model.output, inpL);
    }

    // logits -> probs
    //inpL = ggml_soft_max(ctx0, inpL);

    // run the computation
    ggml_build_forward_expand(&gf, inpL);
    ggml_graph_compute       (ctx0, &gf);

    //if (n_past%100 == 0) {
    //    ggml_graph_print   (&gf);
    //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
    //}

    //embd_w.resize(n_vocab*N);
    //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);

    if (return_all_logits) {
        embd_w.resize(n_vocab * N);
        memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
    } else {
        // return result for just the last token
        embd_w.resize(n_vocab);
        memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
    }

    if (mem_per_token == 0) {
        mem_per_token = ggml_used_mem(ctx0)/N;
    }
    //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));

    ggml_free(ctx0);

    return true;
}

std::vector<double> softmax(const std::vector<float>& logits) {
    std::vector<double> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) max_logit = std::max(max_logit, v);
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        float logit = logits[i] - max_logit;
        double exp_logit = std::exp(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
    return probs;
}

void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params &params, size_t mem_per_token) {
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
    // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
    // Output: `perplexity: 13.5106 [114/114]`
    std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);

    int count = 0;
    double nll = 0.0;
    int seq_count = tokens.size() / params.n_ctx;
    printf("Calculating perplexity over %d chunks\n", seq_count);
    for (int i = 0; i < seq_count; ++i) {
        int start = i * params.n_ctx;
        int end = start + params.n_ctx - 1;
        std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
        std::vector<float> logits;
        auto start_t = std::chrono::high_resolution_clock::now();
        if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
            fprintf(stderr, "Failed to predict\n");
            return;
        }
        auto end_t = std::chrono::high_resolution_clock::now();
        if (i == 0) {
            double seconds = std::chrono::duration<double>(end_t - start_t).count();
            printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
        }
        // We get the logits for all the tokens in the context window (params.n_ctx)
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
        // calculate the perplexity over the last half the window (so the model always has
        // some context to predict the token).
        //
        // We rely on the fact that attention in the forward pass only looks at previous
        // tokens here, so the logits returned for each token are an accurate representation
        // of what the model would have predicted at that point.
        //
        // Example, we have a context window of 512, we will compute perplexity for each of the
        // last 256 tokens.  Then, we split the input up into context window size chunks to
        // process the entire prompt.
        for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
            // Calculate probability of next token, given the previous ones.
            int n_vocab = model.hparams.n_vocab;
            std::vector<float> tok_logits(
                logits.begin() + j * n_vocab,
                logits.begin() + (j + 1) * n_vocab);
            double prob = softmax(tok_logits)[tokens[start + j + 1]];
            nll += -std::log(prob);
            ++count;
        }
        // perplexity is e^(average negative log-likelihood)
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
        fflush(stdout);
    }
    printf("\n");
}

static bool is_interacting = false;

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
void sigint_handler(int signo) {
    printf(ANSI_COLOR_RESET);
    printf("\n"); // this also force flush stdout.
    if (signo == SIGINT) {
        if (!is_interacting) {
            is_interacting=true;
        } else {
            _exit(130);
        }
    }
}
#endif

const char * llama_print_system_info(void) {
    static std::string s;

    s  = "";
    s += "AVX = "       + std::to_string(ggml_cpu_has_avx())       + " | ";
    s += "AVX2 = "      + std::to_string(ggml_cpu_has_avx2())      + " | ";
    s += "AVX512 = "    + std::to_string(ggml_cpu_has_avx512())    + " | ";
    s += "FMA = "       + std::to_string(ggml_cpu_has_fma())       + " | ";
    s += "NEON = "      + std::to_string(ggml_cpu_has_neon())      + " | ";
    s += "ARM_FMA = "   + std::to_string(ggml_cpu_has_arm_fma())   + " | ";
    s += "F16C = "      + std::to_string(ggml_cpu_has_f16c())      + " | ";
    s += "FP16_VA = "   + std::to_string(ggml_cpu_has_fp16_va())   + " | ";
    s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
    s += "BLAS = "      + std::to_string(ggml_cpu_has_blas())      + " | ";
    s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
    s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";

    return s.c_str();
}

int main(int argc, char ** argv) {
    ggml_time_init();
    const int64_t t_main_start_us = ggml_time_us();

    gpt_params params;
    params.model = "models/llama-7B/ggml-model.bin";

    if (gpt_params_parse(argc, argv, params) == false) {
        return 1;
    }

    if (params.n_ctx > 2048) {
        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
                "expect poor results\n", __func__, params.n_ctx);
    }

    if (params.seed < 0) {
        params.seed = time(NULL);
    }

    fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);

    std::mt19937 rng(params.seed);
    if (params.random_prompt) {
        params.prompt = gpt_random_prompt(rng);
    }

//    params.prompt = R"(// this function checks if the number n is prime
//bool is_prime(int n) {)";

    int64_t t_load_us = 0;

    llama_vocab vocab;
    llama_model model;

    // load the model
    {
        const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
        const int64_t t_start_us = ggml_time_us();
        if (!llama_model_load(params.model, model, vocab, params.n_ctx, params.n_parts, memory_type)) {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
            return 1;
        }

        t_load_us = ggml_time_us() - t_start_us;
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
    }

    std::vector<float> logits;

    // determine the required inference memory per token:
    size_t mem_per_token = 0;
    llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

    if (params.perplexity) {
        perplexity(vocab, model, params, mem_per_token);
        exit(0);
    }

    int n_past = 0;

    int64_t t_sample_us  = 0;
    int64_t t_predict_us = 0;

    // Add a space in front of the first character to match OG llama tokenizer behavior
    params.prompt.insert(0, 1, ' ');
    // tokenize the prompt
    std::vector<llama_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);

    params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());

    // prefix & suffix for instruct mode
    const std::vector<llama_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
    const std::vector<llama_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);

    // in instruct mode, we inject a prefix and a suffix to each input by the user
    if (params.instruct) {
        params.interactive = true;
        params.antiprompt.push_back("### Instruction:\n\n");
    }

    // enable interactive mode if reverse prompt is specified
    if (params.antiprompt.size() != 0) {
        params.interactive = true;
    }

    fprintf(stderr, "\n");
    fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
    fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
    for (int i = 0; i < (int) embd_inp.size(); i++) {
        fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
    }
    fprintf(stderr, "\n");
    if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
        struct sigaction sigint_action;
        sigint_action.sa_handler = sigint_handler;
        sigemptyset (&sigint_action.sa_mask);
        sigint_action.sa_flags = 0;
        sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
        signal(SIGINT, sigint_handler);
#endif

        fprintf(stderr, "%s: interactive mode on.\n", __func__);

        if(params.antiprompt.size()) {
            for (auto antiprompt : params.antiprompt) {
                fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
            }
        }
    }
    fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
    fprintf(stderr, "\n\n");

    std::vector<llama_vocab::id> embd;

    int last_n_size = params.repeat_last_n;
    std::vector<llama_vocab::id> last_n_tokens(last_n_size);
    std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);

    if (params.interactive) {
        fprintf(stderr, "== Running in interactive mode. ==\n"
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
               " - Press Ctrl+C to interject at any time.\n"
#endif
               " - Press Return to return control to LLaMa.\n"
               " - If you want to submit another line, end your input in '\\'.\n\n");
        is_interacting = true;
    }

    int input_consumed = 0;
    bool input_noecho = false;

    int remaining_tokens = params.n_predict;

    // set the color for the prompt which will be output initially
    if (params.use_color) {
#if defined (_WIN32)
        // Enable ANSI colors on Windows 10+
        unsigned long dwMode = 0;
        void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
        if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
            SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
        }
#endif
        printf(ANSI_COLOR_YELLOW);
    }

    while (remaining_tokens > 0 || params.interactive) {
        // predict
        if (embd.size() > 0) {
            const int64_t t_start_us = ggml_time_us();

            if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
                fprintf(stderr, "Failed to predict\n");
                return 1;
            }

            t_predict_us += ggml_time_us() - t_start_us;
        }

        n_past += embd.size();
        embd.clear();

        if ((int) embd_inp.size() <= input_consumed) {
            // out of user input, sample next token
            const float top_k = params.top_k;
            const float top_p = params.top_p;
            const float temp  = params.temp;
            const float repeat_penalty = params.repeat_penalty;

            const int n_vocab = model.hparams.n_vocab;

            llama_vocab::id id = 0;

            {
                const int64_t t_start_sample_us = ggml_time_us();

                if (params.ignore_eos) {
                    // set the logit of the eos token to zero to avoid sampling it
                    logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
                }

                id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);

                last_n_tokens.erase(last_n_tokens.begin());
                last_n_tokens.push_back(id);

                t_sample_us += ggml_time_us() - t_start_sample_us;
            }

            // add it to the context
            embd.push_back(id);

            // echo this to console
            input_noecho = false;

            // decrement remaining sampling budget
            --remaining_tokens;
        } else {
            // some user input remains from prompt or interaction, forward it to processing
            while ((int) embd_inp.size() > input_consumed) {
                embd.push_back(embd_inp[input_consumed]);
                last_n_tokens.erase(last_n_tokens.begin());
                last_n_tokens.push_back(embd_inp[input_consumed]);
                ++input_consumed;
                if ((int) embd.size() >= params.n_batch) {
                    break;
                }
            }
        }

        // display text
        if (!input_noecho) {
            for (auto id : embd) {
                printf("%s", vocab.id_to_token[id].c_str());
            }
            fflush(stdout);
        }
        // reset color to default if we there is no pending user input
        if (!input_noecho && params.use_color && (int)embd_inp.size() == input_consumed) {
            printf(ANSI_COLOR_RESET);
        }

        // in interactive mode, and not currently processing queued inputs;
        // check if we should prompt the user for more
        if (params.interactive && (int) embd_inp.size() <= input_consumed) {
            // check for reverse prompt
            std::string last_output;
            for (auto id : last_n_tokens) {
                last_output += vocab.id_to_token[id];
            }

            // Check if each of the reverse prompts appears at the end of the output.
            for (std::string antiprompt : params.antiprompt) {
                if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
                    is_interacting = true;
                    break;
                }
            }
            if (is_interacting) {
                if (params.instruct) {
                    input_consumed = embd_inp.size();
                    embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());

                    printf("\n> ");
                }

                // currently being interactive
                if (params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
                std::string buffer;
                std::string line;
                bool another_line = true;
                do {
                    std::getline(std::cin, line);
                    if (line.empty() || line.back() != '\\') {
                        another_line = false;
                    } else {
                        line.pop_back(); // Remove the continue character
                    }
                    buffer += line + '\n'; // Append the line to the result
                } while (another_line);
                if (params.use_color) printf(ANSI_COLOR_RESET);

                std::vector<llama_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
                embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());

                if (params.instruct) {
                    embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
                }

                remaining_tokens -= line_inp.size();

                input_noecho = true; // do not echo this again
            }
            is_interacting = false;
        }

        // end of text token
        if (embd.back() == EOS_TOKEN_ID) {
            if (params.interactive) {
                is_interacting = true;
            } else {
                fprintf(stderr, " [end of text]\n");
                break;
            }
        }

        // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
        if (params.interactive && remaining_tokens <= 0) {
            remaining_tokens = params.n_predict;
            is_interacting = true;
        }
    }

#if defined (_WIN32)
    signal(SIGINT, SIG_DFL);
#endif

    // report timing
    {
        const int64_t t_main_end_us = ggml_time_us();

        fprintf(stderr, "\n\n");
        fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
        fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
        fprintf(stderr, "%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
        fprintf(stderr, "%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
        fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
    }

    ggml_free(model.ctx);

    if (params.use_color) {
        printf(ANSI_COLOR_RESET);
    }

    return 0;
}