aboutsummaryrefslogtreecommitdiff
path: root/tests/test-quantize-perf.cpp
blob: 600375771ed6a5e83c95e48a84e9dcb562d35185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Benchmark quantization specific functions on synthetic data

#include "ggml.h"

#undef NDEBUG
#include <algorithm>
#include <assert.h>
#include <functional>
#include <inttypes.h>
#include <math.h>
#include <memory>
#include <stdio.h>
#include <string>
#include <vector>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#define MAX_ALIGNMENT 64
#define QK 32
#define WARMUP 5
#define ITERATIONS 10

#define L1_SIZE      32*128
#define L2_SIZE     32*2048
#define L3_SIZE    32*20480
#define MEM_SIZE 32*2048000

struct quantize_perf_params {
    std::vector<std::string> include_types;
    std::vector<size_t> test_sizes;
    size_t alignment_offset = 0;
    bool op_quantize_row_q_reference = false;
    bool op_quantize_row_q = false;
    bool op_dequantize_row_q = false;
    bool op_quantize_row_q_dot = false;
    bool op_vec_dot_q = false;
};


#if defined(__x86_64__) || defined(__i386__)

#include <x86intrin.h>
inline int64_t cpu_cycles() {
// Rough way to detect new-ish CPUs
#ifdef __POPCNT__
    unsigned int dummy;
    return __rdtscp(&dummy);
#else
    return __rdtsc();
#endif
}

#else

#define cpu_cycles() 0

#endif


// Generate synthetic data
void generate_data(float offset, size_t n, float * dst) {
    for (size_t i = 0; i < n; i++) {
        dst[i] = 0.1 + 2*cosf(i + offset);
    }
}

float gigabytes_per_second(size_t bytes, int64_t usecs) {
    return bytes / (float) usecs * 1000000 / (1024*1024*1024);
}

void * align_with_offset(void * ptr, int offset) {
    size_t dummy_size = MAX_ALIGNMENT * 4;
    return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
}

void benchmark_function(size_t size, size_t q_size, std::function<size_t(void)> function) {
    int64_t min_time_us = INT64_MAX;
    int64_t total_time_us = 0;
    int64_t min_time_cycles = INT64_MAX;
    int64_t total_time_cycles = 0;

    for (int i = 0; i < WARMUP; i++) {
        function();
    }


    for (int i = 0; i < ITERATIONS; i++) {
        const int64_t start_time = ggml_time_us();
        const int64_t start_cycles = cpu_cycles();

        function();

        const int64_t end_cycles = cpu_cycles();
        const int64_t end_time = ggml_time_us();

        total_time_cycles += end_cycles - start_cycles;
        min_time_cycles = std::min(min_time_cycles, end_cycles - start_cycles);
        total_time_us += end_time - start_time;
        min_time_us = std::min(min_time_us, end_time - start_time);
    }

    printf("      min cycles/%d vals   : %9.2f\n",  QK, QK * min_time_cycles / (float) size);
    printf("      avg cycles/%d vals   : %9.2f\n",  QK, QK * total_time_cycles / (float) (size * ITERATIONS));
    printf("      float32 throughput   : %9.2f GB/s\n",  gigabytes_per_second(4 * size * ITERATIONS, total_time_us));
    printf("      quantized throughput : %9.2f GB/s\n",  gigabytes_per_second(q_size * ITERATIONS, total_time_us));
}

int main(int argc, char * argv[]) {
    quantize_perf_params params {};

    // read command line

    bool invalid_param = false;
    std::string arg;
    for (int i = 1; i < argc; i++) {
        arg = argv[i];

        if (arg == "--size") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            size_t size = std::stoi(argv[i]);
            if (size % 32 != 0) {
                fprintf(stderr, "error: size %zu not divisible by 32\n", size);
                invalid_param = true;
                break;
            }
            params.test_sizes.push_back(size);
        } else if (arg == "-3") {
            // quick select sizes that probably fit in CPU caches
            params.test_sizes.push_back(L1_SIZE);
            params.test_sizes.push_back(L2_SIZE);
            params.test_sizes.push_back(L3_SIZE);
        } else if (arg == "-4") {
            // quick select cache sizes + memory
            params.test_sizes.push_back(L1_SIZE);
            params.test_sizes.push_back(L2_SIZE);
            params.test_sizes.push_back(L3_SIZE);
            params.test_sizes.push_back(MEM_SIZE);
        } else if (arg == "--op") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            std::string op {argv[i]};
            if (op == "quantize_row_q_reference") {
                params.op_quantize_row_q_reference = true;
            } else if (op == "quantize_row_q") {
                params.op_quantize_row_q = true;
            } else if (op == "dequantize_row_q") {
                params.op_dequantize_row_q = true;
            } else if (op == "quantize_row_q_dot") {
                params.op_quantize_row_q_dot = true;
            } else if (op == "vec_dot_q") {
                params.op_vec_dot_q = true;
            } else {
                invalid_param = true;
                break;
            }
        } else if (arg == "--type") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.include_types.push_back(argv[i]);
        } else if (arg == "--alignment-offset") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            int alignment = std::stoi(argv[i]);
            if (alignment < 0 || alignment > MAX_ALIGNMENT) {
            fprintf(stderr, "error: aligment-offset must be less than %d\n", MAX_ALIGNMENT);
                invalid_param = true;
                break;
            }
            params.alignment_offset = alignment;
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            return 1;
        }
    }
    if (invalid_param) {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        return 1;
    }

    if (params.test_sizes.empty()) {
        params.test_sizes.push_back(L1_SIZE);
    }
    if (!(params.op_quantize_row_q_reference || params.op_quantize_row_q || params.op_dequantize_row_q || params.op_quantize_row_q_dot || params.op_vec_dot_q)) {
        params.op_quantize_row_q_reference = params.op_quantize_row_q = params.op_dequantize_row_q = params.op_quantize_row_q_dot = params.op_vec_dot_q = true;
    }

    std::sort(params.test_sizes.begin(), params.test_sizes.end());
    size_t largest = params.test_sizes.back();

    std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2);
    std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2);
    std::vector<uint8_t> test_q1_v(largest*4 + MAX_ALIGNMENT*2);
    std::vector<uint8_t> test_q2_v(largest*4 + MAX_ALIGNMENT*2);
    std::vector<uint8_t> test_out_v(largest*4 + MAX_ALIGNMENT*2);

    float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset);
    float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset);
    float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset);
    float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset);
    float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset);

    generate_data(0, largest, test_data1);
    generate_data(1, largest, test_data2);


    // Initialize GGML, ensures float conversion tables are initialized
    struct ggml_init_params ggml_params = {
        /* .mem_size   = */ 1*1024,
        /* .mem_buffer = */ NULL,
        /* .no_alloc   = */ true,
    };
    struct ggml_context * ctx = ggml_init(ggml_params);

    for (int i = 0; i < GGML_TYPE_COUNT; i++) {
        ggml_type type = (ggml_type) i;
        quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
        if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
            continue;
        }

        if (qfns.quantize_row_q && qfns.dequantize_row_q) {
            printf("%s\n", ggml_type_name(type));

            if (params.op_quantize_row_q_reference) {
                printf("  quantize_row_q_reference\n");
                for (size_t size : params.test_sizes) {
                    printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
                    auto quantize_fn = [&](void ) {
                        qfns.quantize_row_q_reference(test_data1, test_q1, size);
                        return test_q1[0];
                    };
                    size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
                    benchmark_function(size, quantized_size, quantize_fn);
                }
                printf("\n");
            }

            if (params.op_quantize_row_q) {
                printf("  quantize_row_q\n");
                for (size_t size : params.test_sizes) {
                    printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
                    auto quantize_fn = [&](void ) {
                        qfns.quantize_row_q(test_data1, test_q1, size);
                        return test_q1[0];
                    };
                    size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
                    benchmark_function(size, quantized_size, quantize_fn);
                }
                printf("\n");
            }

            if (params.op_dequantize_row_q) {
                printf("  dequantize_row_q\n");
                qfns.quantize_row_q(test_data1, test_q1, largest);
                for (size_t size : params.test_sizes) {
                    printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
                    auto quantize_fn = [&](void ) {
                        qfns.dequantize_row_q(test_q1, test_out, size);
                        return test_out[0];
                    };
                    size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
                    benchmark_function(size, quantized_size, quantize_fn);
                }
                printf("\n");
            }

            if (params.op_quantize_row_q_dot) {
                printf("  quantize_row_q_dot\n");
                for (size_t size : params.test_sizes) {
                    printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
                    auto quantize_fn = [&](void ) {
                        qfns.quantize_row_q_dot(test_data1, test_q1, size);
                        return test_q1[0];
                    };
                    size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
                    benchmark_function(size, quantized_size, quantize_fn);
                }
                printf("\n");
            }

            if (params.op_vec_dot_q) {
                printf("  vec_dot_q\n");
                qfns.quantize_row_q(test_data1, test_q1, largest);
                qfns.quantize_row_q(test_data2, test_q2, largest);
                for (size_t size : params.test_sizes) {
                    printf("    %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
                    auto quantize_fn = [&](void ) {
                        float result;
                        qfns.vec_dot_q(size, &result, test_q1, test_q2);
                        return result;
                    };
                    size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
                    benchmark_function(size, quantized_size, quantize_fn);
                }
                printf("\n");
            }
        }
    }

    ggml_free(ctx);

    return 0;
}