aboutsummaryrefslogtreecommitdiff
path: root/utils.cpp
blob: 1d5309c3a4ca3e463d7f5b044170e06381d7a58b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include "utils.h"

#include <cassert>
#include <cstring>
#include <fstream>
#include <string>
#include <iterator>
#include <algorithm>

 #if defined(_MSC_VER) || defined(__MINGW32__)
 #include <malloc.h> // using malloc.h with MSC/MINGW
 #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
 #include <alloca.h>
 #endif

bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
    // determine sensible default number of threads.
    // std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0.
#ifdef __linux__
    std::ifstream cpuinfo("/proc/cpuinfo");
    params.n_threads = std::count(std::istream_iterator<std::string>(cpuinfo),
                                  std::istream_iterator<std::string>(),
                                  std::string("processor"));
#endif
    if (params.n_threads == 0) {
        params.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency());
    }

    for (int i = 1; i < argc; i++) {
        std::string arg = argv[i];

        if (arg == "-s" || arg == "--seed") {
            params.seed = std::stoi(argv[++i]);
        } else if (arg == "-t" || arg == "--threads") {
            params.n_threads = std::stoi(argv[++i]);
        } else if (arg == "-p" || arg == "--prompt") {
            params.prompt = argv[++i];
        } else if (arg == "-f" || arg == "--file") {
            std::ifstream file(argv[++i]);
            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
            if (params.prompt.back() == '\n') {
                params.prompt.pop_back();
            }
        } else if (arg == "-n" || arg == "--n_predict") {
            params.n_predict = std::stoi(argv[++i]);
        } else if (arg == "--top_k") {
            params.top_k = std::stoi(argv[++i]);
        } else if (arg == "-c" || arg == "--ctx_size") {
            params.n_ctx = std::stoi(argv[++i]);
        } else if (arg == "--memory_f16") {
            params.memory_f16 = true;
        } else if (arg == "--top_p") {
            params.top_p = std::stof(argv[++i]);
        } else if (arg == "--temp") {
            params.temp = std::stof(argv[++i]);
        } else if (arg == "--repeat_last_n") {
            params.repeat_last_n = std::stoi(argv[++i]);
        } else if (arg == "--repeat_penalty") {
            params.repeat_penalty = std::stof(argv[++i]);
        } else if (arg == "-b" || arg == "--batch_size") {
            params.n_batch = std::stoi(argv[++i]);
        } else if (arg == "-m" || arg == "--model") {
            params.model = argv[++i];
        } else if (arg == "-i" || arg == "--interactive") {
            params.interactive = true;
        } else if (arg == "--interactive-first") {
            params.interactive_start = true;
        } else if (arg == "-ins" || arg == "--instruct") {
            params.instruct = true;
        } else if (arg == "--color") {
            params.use_color = true;
        } else if (arg == "-r" || arg == "--reverse-prompt") {
            params.antiprompt.push_back(argv[++i]);
        } else if (arg == "--perplexity") {
            params.perplexity = true;
        } else if (arg == "--ignore-eos") {
            params.ignore_eos = true;
        } else if (arg == "--n_parts") {
            params.n_parts = std::stoi(argv[++i]);
        } else if (arg == "-h" || arg == "--help") {
            gpt_print_usage(argc, argv, params);
            exit(0);
        } else if (arg == "--random-prompt") {
            params.random_prompt = true;
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            gpt_print_usage(argc, argv, params);
            exit(0);
        }
    }

    return true;
}

void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "options:\n");
    fprintf(stderr, "  -h, --help            show this help message and exit\n");
    fprintf(stderr, "  -i, --interactive     run in interactive mode\n");
    fprintf(stderr, "  --interactive-first   run in interactive mode and wait for input right away\n");
    fprintf(stderr, "  -ins, --instruct      run in instruction mode (use with Alpaca models)\n");
    fprintf(stderr, "  -r PROMPT, --reverse-prompt PROMPT\n");
    fprintf(stderr, "                        run in interactive mode and poll user input upon seeing PROMPT (can be\n");
    fprintf(stderr, "                        specified more than once for multiple prompts).\n");
    fprintf(stderr, "  --color               colorise output to distinguish prompt and user input from generations\n");
    fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1, use random seed for <= 0)\n");
    fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
    fprintf(stderr, "  -p PROMPT, --prompt PROMPT\n");
    fprintf(stderr, "                        prompt to start generation with (default: empty)\n");
    fprintf(stderr, "  --random-prompt       start with a randomized prompt.\n");
    fprintf(stderr, "  -f FNAME, --file FNAME\n");
    fprintf(stderr, "                        prompt file to start generation.\n");
    fprintf(stderr, "  -n N, --n_predict N   number of tokens to predict (default: %d)\n", params.n_predict);
    fprintf(stderr, "  --top_k N             top-k sampling (default: %d)\n", params.top_k);
    fprintf(stderr, "  --top_p N             top-p sampling (default: %.1f)\n", params.top_p);
    fprintf(stderr, "  --repeat_last_n N     last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n);
    fprintf(stderr, "  --repeat_penalty N    penalize repeat sequence of tokens (default: %.1f)\n", params.repeat_penalty);
    fprintf(stderr, "  -c N, --ctx_size N    size of the prompt context (default: %d)\n", params.n_ctx);
    fprintf(stderr, "  --ignore-eos          ignore end of stream token and continue generating\n");
    fprintf(stderr, "  --memory_f16          use f16 instead of f32 for memory key+value\n");
    fprintf(stderr, "  --temp N              temperature (default: %.1f)\n", params.temp);
    fprintf(stderr, "  --n_parts N           number of model parts (default: -1 = determine from dimensions)\n");
    fprintf(stderr, "  -b N, --batch_size N  batch size for prompt processing (default: %d)\n", params.n_batch);
    fprintf(stderr, "  --perplexity          compute perplexity over the prompt\n");
    fprintf(stderr, "  -m FNAME, --model FNAME\n");
    fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
    fprintf(stderr, "\n");
}

std::string gpt_random_prompt(std::mt19937 & rng) {
    const int r = rng() % 10;
    switch (r) {
        case 0: return "So";
        case 1: return "Once upon a time";
        case 2: return "When";
        case 3: return "The";
        case 4: return "After";
        case 5: return "If";
        case 6: return "import";
        case 7: return "He";
        case 8: return "She";
        case 9: return "They";
        default: return "To";
    }

    return "The";
}

// TODO: not great allocating this every time
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
    // initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
    std::vector<llama_token> res(text.size() + (int)add_bos);
    int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
    assert(n >= 0);
    res.resize(n);

    return res;
}