diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-03-25 20:26:40 +0200 |
---|---|---|
committer | Georgi Gerganov <ggerganov@gmail.com> | 2023-03-25 20:26:40 +0200 |
commit | a316a425d04027453dc0fd45f003b647c12f66f9 (patch) | |
tree | b33d7c55741f10f1cc84f489df05e1fad96f0417 /examples/perplexity | |
parent | ecbe466a364876927994e2f1ec14f4d82301d201 (diff) |
Overhaul the examples structure
- main -> examples
- utils -> examples (renamed to "common")
- quantize -> examples
- separate tools for "perplexity" and "embedding"
Hope I didn't break something !
Diffstat (limited to 'examples/perplexity')
-rw-r--r-- | examples/perplexity/CMakeLists.txt | 4 | ||||
-rw-r--r-- | examples/perplexity/README.md | 3 | ||||
-rw-r--r-- | examples/perplexity/perplexity.cpp | 146 |
3 files changed, 153 insertions, 0 deletions
diff --git a/examples/perplexity/CMakeLists.txt b/examples/perplexity/CMakeLists.txt new file mode 100644 index 0000000..5836df8 --- /dev/null +++ b/examples/perplexity/CMakeLists.txt @@ -0,0 +1,4 @@ +set(TARGET perplexity) +add_executable(${TARGET} perplexity.cpp) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md new file mode 100644 index 0000000..a932275 --- /dev/null +++ b/examples/perplexity/README.md @@ -0,0 +1,3 @@ +# perplexity
+
+TODO
diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp new file mode 100644 index 0000000..f0266a0 --- /dev/null +++ b/examples/perplexity/perplexity.cpp @@ -0,0 +1,146 @@ +#include "common.h" +#include "llama.h" + +#include <cassert> +#include <cinttypes> +#include <cmath> +#include <cstdio> +#include <cstring> +#include <string> +#include <vector> + +std::vector<double> softmax(const std::vector<float>& logits) { + std::vector<double> probs(logits.size()); + float max_logit = logits[0]; + for (float v : logits) max_logit = std::max(max_logit, v); + double sum_exp = 0.0; + for (size_t i = 0; i < logits.size(); i++) { + // Subtract the maximum logit value from the current logit value for numerical stability + float logit = logits[i] - max_logit; + double exp_logit = std::exp(logit); + sum_exp += exp_logit; + probs[i] = exp_logit; + } + for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; + return probs; +} + +void perplexity(llama_context * ctx, const gpt_params & params) { + // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research + // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` + // Output: `perplexity: 13.5106 [114/114]` + auto tokens = ::llama_tokenize(ctx, params.prompt, true); + + int count = 0; + double nll = 0.0; + int seq_count = tokens.size() / params.n_ctx; + + fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count); + + for (int i = 0; i < seq_count; ++i) { + int start = i * params.n_ctx; + int end = start + params.n_ctx - 1; + std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end); + auto start_t = std::chrono::high_resolution_clock::now(); + if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return; + } + auto end_t = std::chrono::high_resolution_clock::now(); + if (i == 0) { + double seconds = std::chrono::duration<double>(end_t - start_t).count(); + printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0)); + } + // We get the logits for all the tokens in the context window (params.n_ctx) + // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, + // calculate the perplexity over the last half the window (so the model always has + // some context to predict the token). + // + // We rely on the fact that attention in the forward pass only looks at previous + // tokens here, so the logits returned for each token are an accurate representation + // of what the model would have predicted at that point. + // + // Example, we have a context window of 512, we will compute perplexity for each of the + // last 256 tokens. Then, we split the input up into context window size chunks to + // process the entire prompt. + + auto logits = llama_get_logits(ctx); + for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) { + // Calculate probability of next token, given the previous ones. + int n_vocab = llama_n_vocab(ctx); + std::vector<float> tok_logits( + logits + j * n_vocab, + logits + (j + 1) * n_vocab); + double prob = softmax(tok_logits)[tokens[start + j + 1]]; + nll += -std::log(prob); + ++count; + } + // perplexity is e^(average negative log-likelihood) + printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); + fflush(stdout); + } + printf("\n"); +} + +int main(int argc, char ** argv) { + gpt_params params; + params.model = "models/llama-7B/ggml-model.bin"; + + if (gpt_params_parse(argc, argv, params) == false) { + return 1; + } + + params.perplexity = true; + + if (params.n_ctx > 2048) { + fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" + "expect poor results\n", __func__, params.n_ctx); + } + + if (params.seed <= 0) { + params.seed = time(NULL); + } + + fprintf(stderr, "%s: seed = %d\n", __func__, params.seed); + + std::mt19937 rng(params.seed); + if (params.random_prompt) { + params.prompt = gpt_random_prompt(rng); + } + + llama_context * ctx; + + // load the model + { + auto lparams = llama_context_default_params(); + + lparams.n_ctx = params.n_ctx; + lparams.n_parts = params.n_parts; + lparams.seed = params.seed; + lparams.f16_kv = params.memory_f16; + lparams.logits_all = params.perplexity; + lparams.use_mlock = params.use_mlock; + lparams.embedding = params.embedding; + + ctx = llama_init_from_file(params.model.c_str(), lparams); + + if (ctx == NULL) { + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); + return 1; + } + } + + // print system information + { + fprintf(stderr, "\n"); + fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", + params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + } + + perplexity(ctx, params); + + llama_print_timings(ctx); + llama_free(ctx); + + return 0; +} |