aboutsummaryrefslogtreecommitdiff
path: root/examples/benchmark/benchmark-matmult.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/benchmark/benchmark-matmult.cpp')
-rw-r--r--examples/benchmark/benchmark-matmult.cpp260
1 files changed, 260 insertions, 0 deletions
diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp
new file mode 100644
index 0000000..19cbab1
--- /dev/null
+++ b/examples/benchmark/benchmark-matmult.cpp
@@ -0,0 +1,260 @@
+#include <locale.h>
+#include "ggml.h"
+#include <assert.h>
+#include <math.h>
+#include <cstring>
+#include <cstdio>
+#include <cinttypes>
+#include <unordered_map>
+#include <queue>
+#include <string.h>
+#include <cassert>
+#include <fstream>
+#include <string>
+#include <iterator>
+#include <algorithm>
+
+float tensor_sum_elements(struct ggml_tensor * tensor) {
+ float sum = 0;
+ if (tensor->type==GGML_TYPE_F32) {
+ for (int j = 0; j < tensor->ne[1]; j++) {
+ for (int k = 0; k < tensor->ne[0]; k++) {
+ sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
+ }
+ }
+ }
+ return sum;
+}
+
+
+/*
+ These are mapping to unknown
+ GGML_TYPE_I8,
+ GGML_TYPE_I16,
+ GGML_TYPE_I32,
+ GGML_TYPE_COUNT,
+*/
+
+#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
+
+#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5ld x %5ld x %5ld, nb = (%5li, %5li, %5li) - ", #TENSOR, \
+ TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
+ TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
+ { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
+
+struct benchmark_params_struct {
+ int32_t n_threads = 1;
+ int32_t n_iterations = 10;
+};
+
+void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
+ fprintf(stderr, "usage: %s [options]\n", argv[0]);
+ fprintf(stderr, "\n");
+ fprintf(stderr, "options:\n");
+ fprintf(stderr, " -h, --help show this help message and exit\n");
+ fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
+ fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
+ fprintf(stderr, "\n");
+}
+
+int main(int argc, char ** argv) {
+
+
+ struct benchmark_params_struct benchmark_params;
+
+ bool invalid_param = false;
+ std::string arg;
+ for (int i = 1; i < argc; i++) {
+ arg = argv[i];
+
+ if (arg == "-t" || arg == "--threads") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ benchmark_params.n_threads = std::stoi(argv[i]);
+ } else if (arg == "-i" || arg == "--iter") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ benchmark_params.n_iterations = std::stoi(argv[i]);
+ } else if (arg == "-h" || arg == "--help") {
+ print_usage(argc, argv, benchmark_params);
+ exit(0);
+ }
+ if (invalid_param) {
+ fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
+ print_usage(argc, argv, benchmark_params);
+ exit(1);
+ }
+ }
+
+ // create the ggml context
+ printf("Starting Test\n");
+
+ struct ggml_context * ctx;
+ //const int sizex = 4096;
+ //const int sizey = 11008;
+
+#undef VERBOSE_DEBUGGING
+#ifndef VERBOSE_DEBUGGING
+ const int sizey = 4096;
+ const int sizex = 11008;
+ const int sizez = 128;
+#else
+ /* Working - let's increase size */
+ const int sizey = 1;
+ const int sizex = (8*32);
+ const int sizez = 1;
+
+ /*const int sizey = 1;
+ const int sizex = 3*(8*32);
+ const int sizez = 1;*/
+#endif
+
+ //printf("Memsize required = %i\n", sizex*sizex);
+
+ size_t ctx_size = 0;
+ ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
+ ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
+ ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
+ ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
+ ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
+ ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
+ ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
+ ctx_size += 1024*1024*16;
+
+ printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024));
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ ctx_size,
+ /*.mem_buffer =*/ NULL,
+ /* no_alloc =*/ 0
+ };
+
+ ctx = ggml_init(params);
+ if (!ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ return false;
+ }
+
+
+ printf("Creating new tensors\n");
+ // printf("Creating new tensor m1\n");
+ struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
+ ggml_set_f32(m11, 1.0f);
+
+ // printf("Creating new tensor m1\n");
+ struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
+ ggml_set_f32(m12, 1.5f);
+
+ // printf("Creating new tensor m2\n");
+ struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
+ ggml_set_f32(m2, 2.0f);
+
+ printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
+ // printf("Creating new tensor m11xm2\n");
+ struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
+
+ // printf("Creating compute graph\n");
+ struct ggml_cgraph gf = ggml_build_forward(m11xm2);
+
+ gf.n_threads=benchmark_params.n_threads;
+ printf("cgraph->n_threads=%i\n",gf.n_threads);
+
+ TENSOR_DUMP(m11);
+ TENSOR_DUMP(m2);
+
+ ggml_graph_compute(ctx, &gf);
+
+ TENSOR_DUMP(gf.nodes[0]);
+
+ printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");
+
+ int32_t nelements = sizex*sizey;
+ int32_t ne[2] = { sizex, sizey };
+
+ std::vector<int64_t> hist_cur(1 << 4, 0);
+
+ // Set up a the benchmark matrices
+ // printf("Creating new tensor q11 & Running quantize\n");
+ struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
+ ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());
+
+ // Set up a the compute graph
+ // printf("Creating new tensor q31\n");
+ struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
+
+ // printf("Creating compute graph\n");
+ struct ggml_cgraph gf31 = ggml_build_forward(q31);
+ gf31.n_threads=benchmark_params.n_threads;
+
+ // Set up a second graph computation to make sure we override the CPU cache lines
+ // printf("Creating new tensor q12 & Running quantize\n");
+ struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
+ ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());
+
+ // printf("Creating new tensor q32\n");
+ struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
+
+ //printf("Creating compute graph\n");
+ struct ggml_cgraph gf32 = ggml_build_forward(q32);
+ gf32.n_threads=benchmark_params.n_threads;
+ printf("cgraph->n_threads=%i\n",gf31.n_threads);
+
+ const int dimx = sizex;
+ const int dimy = sizey;
+ const int dimz = sizez;
+ long long int flops_per_dot_product = dimy + dimy;
+ long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
+ printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
+
+
+ // Let's use the F32 result from above as a reference for the q4_0 multiplication
+ float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
+
+
+ printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
+ printf("==============================================================================================\n");
+
+ for (int i=0;i<benchmark_params.n_iterations ;i++) {
+
+ long long int start = ggml_time_us();
+ //printf("Running ggml_graph_compute\n");
+ ggml_graph_compute(ctx, &gf31);
+ long long int stop = ggml_time_us();
+ long long int usec = stop-start;
+ float flops_per_usec = (1.0f*flops_per_matrix)/usec;
+ printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
+ i,
+ gf31.n_threads,
+ sizex, sizey, sizez, flops_per_matrix,
+ usec,flops_per_usec);
+
+#ifdef VERBOSE_DEBUGGING
+ TENSOR_DUMP("res",gf31.nodes[0])
+#endif
+
+ // Check that the matrix multiplication result is in the right ballpark
+ // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
+ float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
+ float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
+ float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
+
+ if (delta > allowed_delta) {
+ printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
+ sum_of_F32_reference,
+ sum_of_Q4_result,
+ delta,
+ allowed_delta
+ );
+ exit(0);
+ }
+
+ // Running a different graph computation to make sure we override the CPU cache lines
+ ggml_graph_compute(ctx, &gf32);
+
+ }
+
+}