aboutsummaryrefslogtreecommitdiff
path: root/examples/benchmark/benchmark-matmult.cpp
blob: 19cbab1c38825a2baea0d7ad0238590f619b7c7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include <locale.h>
#include "ggml.h"
#include <assert.h>
#include <math.h>
#include <cstring>
#include <cstdio>
#include <cinttypes>
#include <unordered_map>
#include <queue>
#include <string.h>
#include <cassert>
#include <fstream>
#include <string>
#include <iterator>
#include <algorithm>

float tensor_sum_elements(struct ggml_tensor * tensor) {
    float sum = 0;
    if (tensor->type==GGML_TYPE_F32) {
        for (int j = 0; j < tensor->ne[1]; j++) {
            for (int k = 0; k < tensor->ne[0]; k++) {
                sum +=  ((float *) tensor->data)[j*tensor->ne[0]+k];
            }
        }
    }
    return sum;
}


/*
    These are mapping to unknown
    GGML_TYPE_I8,
    GGML_TYPE_I16,
    GGML_TYPE_I32,
    GGML_TYPE_COUNT,
*/

#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"

#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5ld x %5ld x %5ld, nb = (%5li, %5li, %5li) - ", #TENSOR, \
        TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
        TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
    { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }

struct benchmark_params_struct {
    int32_t n_threads     = 1;
    int32_t n_iterations  = 10;
};

void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "options:\n");
    fprintf(stderr, "  -h, --help            show this help message and exit\n");
    fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
    fprintf(stderr, "  -i N, --iter N     number of iterations to use during computation (default: %d)\n", params.n_iterations);
    fprintf(stderr, "\n");
}

int main(int argc, char ** argv)  {


    struct benchmark_params_struct benchmark_params;

    bool invalid_param = false;
    std::string arg;
    for (int i = 1; i < argc; i++) {
        arg = argv[i];

        if (arg == "-t" || arg == "--threads") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            benchmark_params.n_threads = std::stoi(argv[i]);
        } else if (arg == "-i" || arg == "--iter") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            benchmark_params.n_iterations = std::stoi(argv[i]);
        }  else if (arg == "-h" || arg == "--help") {
            print_usage(argc, argv, benchmark_params);
            exit(0);
        }
        if (invalid_param) {
            fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
            print_usage(argc, argv, benchmark_params);
            exit(1);
        }
    }

    // create the ggml context
    printf("Starting Test\n");

    struct ggml_context * ctx;
    //const int sizex = 4096;
    //const int sizey = 11008;

#undef VERBOSE_DEBUGGING
#ifndef VERBOSE_DEBUGGING
    const int sizey = 4096;
    const int sizex = 11008;
    const int sizez = 128;
#else
    /* Working - let's increase size */
    const int sizey = 1;
    const int sizex = (8*32);
    const int sizez = 1;

    /*const int sizey = 1;
    const int sizex = 3*(8*32);
    const int sizez = 1;*/
#endif

    //printf("Memsize required = %i\n", sizex*sizex);

    size_t ctx_size = 0;
    ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
    ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
    ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
    ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
    ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
    ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
    ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
    ctx_size += 1024*1024*16;

    printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024));

    struct ggml_init_params params = {
        /*.mem_size   =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /* no_alloc   =*/ 0
    };

    ctx = ggml_init(params);
    if (!ctx) {
        fprintf(stderr, "%s: ggml_init() failed\n", __func__);
        return false;
    }


    printf("Creating new tensors\n");
    // printf("Creating new tensor m1\n");
    struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
    ggml_set_f32(m11, 1.0f);

    // printf("Creating new tensor m1\n");
    struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
    ggml_set_f32(m12, 1.5f);

    // printf("Creating new tensor m2\n");
    struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
    ggml_set_f32(m2, 2.0f);

    printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
    // printf("Creating new tensor m11xm2\n");
    struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);

    // printf("Creating compute graph\n");
    struct ggml_cgraph gf = ggml_build_forward(m11xm2);

    gf.n_threads=benchmark_params.n_threads;
    printf("cgraph->n_threads=%i\n",gf.n_threads);

    TENSOR_DUMP(m11);
    TENSOR_DUMP(m2);

    ggml_graph_compute(ctx, &gf);

    TENSOR_DUMP(gf.nodes[0]);

    printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");

    int32_t nelements = sizex*sizey;
    int32_t ne[2] = { sizex, sizey };

    std::vector<int64_t> hist_cur(1 << 4, 0);

    // Set up a the benchmark matrices
    // printf("Creating new tensor q11 & Running quantize\n");
    struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
    ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());

    // Set up a the compute graph
    // printf("Creating new tensor q31\n");
    struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);

    // printf("Creating compute graph\n");
    struct ggml_cgraph gf31 = ggml_build_forward(q31);
    gf31.n_threads=benchmark_params.n_threads;

    // Set up a second graph computation to make sure we override the CPU cache lines
    // printf("Creating new tensor q12 & Running quantize\n");
    struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
    ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());

    // printf("Creating new tensor q32\n");
    struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);

    //printf("Creating compute graph\n");
    struct ggml_cgraph gf32 = ggml_build_forward(q32);
    gf32.n_threads=benchmark_params.n_threads;
    printf("cgraph->n_threads=%i\n",gf31.n_threads);

    const int dimx = sizex;
    const int dimy = sizey;
    const int dimz = sizez;
    long long int flops_per_dot_product = dimy + dimy;
    long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
    printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);


    // Let's use the F32 result from above as a reference for the q4_0 multiplication
    float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);


    printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
    printf("==============================================================================================\n");

    for (int i=0;i<benchmark_params.n_iterations ;i++) {

        long long int start = ggml_time_us();
        //printf("Running ggml_graph_compute\n");
        ggml_graph_compute(ctx, &gf31);
        long long int stop = ggml_time_us();
        long long int usec = stop-start;
        float flops_per_usec = (1.0f*flops_per_matrix)/usec;
        printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
            i,
            gf31.n_threads,
            sizex, sizey, sizez, flops_per_matrix,
            usec,flops_per_usec);

#ifdef VERBOSE_DEBUGGING
        TENSOR_DUMP("res",gf31.nodes[0])
#endif

        // Check that the matrix multiplication result is in the right ballpark
        // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
        float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
        float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
        float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; //  Let's accept an epsilon of 10^-6

        if (delta > allowed_delta)  {
            printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
                sum_of_F32_reference,
                sum_of_Q4_result,
                delta,
                allowed_delta
            );
            exit(0);
        }

        // Running a different graph computation to make sure we override the CPU cache lines
        ggml_graph_compute(ctx, &gf32);

    }

}